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Abstract. The homogenization of variational formulations of nonlinear
systems of partial differential equations with periodically oscillating co-
efficients, needed in many problems of continuum mechanics with non-
negligible microstructural material properties, is studied, using the tech-
nique of the two-scale convergence with respect to Radon measures. (Un-
like the classical approach, such technique can handle e. g. “domains with
holes”, applied in problems of flow of a liquid through a porous medium,
without artificial geometrical assumptions.) The overview of basic lemmas
(including corresponding proofs) is presented. The existence and conver-
gence analysis for the variational formulation of a model elliptic problem
demonstrates how the notion of the two-scale convergence is able to ex-
plain and simplify the complicated form of the macroscopic limit equation,
thanks to the addition of a new microscopic hidden variable.
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1 Remarks to the history of homogenization techniques

In most problems of continuum mechanics at least two length scales can be distin-
guished – a macroscopic one (usually in meters) and a microscopic one (typically in
micrometers), which brings complications to all numerical calculations and simu-
lations. Typically simple algorithms, based on the classical results from textbooks
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of functional analysis and numerical methods, then do not reflect physical real-
ity at a satisfactory level; in such sense [6] emphasizes that it is very important
to distinguish between the verification (whether the ideal mathematical problem
is well-defined, solvable, etc.) and the validation (whether and how some results
similar to the computed ones can be observed both in the laboratories and in
the nature) in all engineering applications. In this section we shall mention some
practical approaches, their advantages and drawbacks, following their rough clas-
sification from [39].

Most commercial software packages and technical standards prefer cheap com-
putations and simple theoretical considerations; only in case when the results are
expected to be too far from the realistic ones, some naive “averaging” procedure
is applied to material characteristics. Unfortunately, there are many examples of
strange and absurd numerical outputs, namely for physical processes in materials
consisting of several phases with strongly different mechanical quantities.

Some of these difficulties can be overcome in a relatively simple way, demon-
strated for various types of composites e. g. in [40], [35] and [37]: thanks to the
assumed periodicity both of a material structure and of external loads, the pro-
cesses of elastic deformation and high-temperature creep, based on the viscoelastic
Maxwell model with one linear elastic component (from the well-known Hooke law)
and one non-linear viscous component (e. g. in the power-law form by Norton), cou-
pled with the diffusion and sliding along all phase interfaces, can be analyzed at
a microscopic level directly to simulate the effect of thin strengthening (nearly
elastic) ceramic plates or fibers, located in a matrix with low creep resistance at
elevated temperature and aligned in the proposed direction of uniform tension.
Nevertheless, the limits of this access are evident: if some loads are more compli-
cated then the simple extension of results from a micro- to a macroscopic level is
not available or requires non-realistic simplifications; attempts to cover both scales
using standard FEM, BEM, FVM, RKPM, etc. numerical techniques then lead to
unreasonably large, slow and expensive calculations.

A natural way how to handle problems with a periodic microstructure, but
without any a priori prescribed macroscopic symmetries, is to improve the “averag-
ing” limit approach using better microstructural information. Such computational
homogenization of periodic media has been designed in [5] yet. Consequently a
large number of convergence techniques, studying and explaining the limit process
from the microscopic (but finite) scale to zero one, has been developed in last two
decades: at least the ideas of the asymptotic expansion (cf. [7], [33] and [43]), essen-
tially adapted to the study of periodic problems, and the so-called G-convergence
(cf. [34] and [14]), H-convergence (cf. [29]) and Γ-convergence (cf. [15] and [13])
should be mentioned.

These ideas form the theoretical mathematical basis for the study of varia-
tional problems with a hidden microstructure, but some their unpleasant common
properties cannot be ignored: they are formally complicated and user-unfriendly
and the construction of adequate test functions for corresponding integral equa-
tions (namely for nonlinear systems) is often tricky, not transparent for physicists.
A new approach occurred about ten years ago. All papers and books appreciate
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the pioneering role of [31], but their definitions, lemmas and theorems are usu-
ally taken (and slightly modified or generalized if necessary) from [2]. The main
idea is, thanks to the addition of a microscopic hidden variable, to substitute the
classical weak and strong convergence in Lebesgue and Sobolev spaces by the so-
called two-scale (or multiple-scale) convergence incorporating certain compensated
compactness phenomenon due to the particular (not very artificial) choice of test
functions. This seems to be equivalent with the original idea of [4], based on cer-
tain transform of a spacial variable with respect to a hidden microstructural one,
as discussed in [30].

In [10] the two-scale analysis has been applied to the homogenization of sev-
eral linearized problems, as small-deformation elasticity, heat or wave equation.
For linear or quasilinear problems, special families of homogenized FE decompo-
sitions supporting the two-scale convergence have been studied in [26] and [27]
recently. The mathematical analysis of properties of the two-scale convergence
(more detailed than in [2] where some expected result and important proofs are
only sketched), extended to parabolic time-dependent problems, is presented in
[22]. In many cases of practical interest the two-scale limit passage leads to some
effective equations for the original macroscopic problem, but in more complicated
nonlinear problems such equations cannot be often written in a simple form, al-
though the two-scale convergence may be guaranteed; this is e. g. the case of the
“deck-of-card” model of creep flow applied in [36], whose main idea of “unfrac-
tured” (reversible elastic) and “fractured” (irreversible plastic) deformation zones
comes from [16].

All above mentioned methods are applicable to domains consisting of several
material phases, but without any holes, cracks or perforations. This is evidently
not satisfied in problems of flow through porous media where important phenom-
ena occur on the boundaries of pores (both of a macro- and a microscopic size),
as demonstrated e. g. in [12] and [38]. In [3] the notion of the two-scale conver-
gence has been generalized from classical non-perforated media from [2] to media
with pores described by periodic surfaces; later such access has been used also for
selected parabolic time-dependent problems from technical practice (as in [9] or
[11] where, in addition, some special nonlinearities are taken into account). These
studies introduce various special (and rather strong) assumptions on the shape of a
domain under consideration; the proof technique must be then adapted to each case
separately. This drawback can be removed by defining the two-scale convergence
more carefully with respect to measures (not only in classical Lebesgue spaces as in
[2], [22] and their non-substantial modifications). The so-called scale convergence,
introduced in [25], can be identified with the rearranged two-scale approach from
[2], making use of the properties of Young measures, discussed in [32], with the
close relation to the Γ-convergence. In the following sections of this paper we shall
deal with a slightly different generalization of this approach, compatible with [8],
which is based on its redefinition in Lebesgue spaces (and for gradients in Sobolev
spaces) with respect to special periodic Radon measures, applying the tangential
calculus, developed in [18]; the weak and strong convergence in such spaces has
been characterized in [17]. This approach brings one non-negligible benefit: a cor-
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responding microstructure can include both holes of complicated shapes and parts
of lower dimensions without additional geometrical assumptions.

2 Definition and properties of the two-scale convergence

In this section we shall introduce the basic notations, present the definition of
the two-scale convergence (with respect to measures) and make the overview of
its useful properties, including corresponding proofs, although some of them are
slightly modified versions of similar results from [2], [22] or [8]; the main reason for
such form of publication is that some well-known lemmas from the classical theory
of Lebegue and Sobolev spaces must be checked very carefully in the generalized
spaces (and usually some non-standard assumptions are needed).

Let us consider a n-dimensional domain Ω in the Euclidean space Rn (n ∈
{1, 2, 3}) with a boundary ∂Ω; we shall use Cartesian coordinates in Rn every-
where. The standard notation of function spaces (where fixed real numbers p > 1
and q = p/(p− 1) occur) will be applied without comments and explanations (for
more information see e. g. [32], p. 35) including such basic facts from functional
analysis as the Hölder inequality (cf. [24], p. 65); the notation of spaces with re-
spect to measures is taken from [18], the lower index # forces periodicity. Let Y
be a unite cube in Rn with a boundary ∂Y.

Let µ be some positive Y-periodic Radon measure in Rn and λ a Lebesgue
measure in Rn. Let us choose an arbitrary positive ε. Let µε be a measure (“ε-
scaling of µ”) defined by the formula∫

Ω

ϕ(x) dµε(x) = εn
∫
Ω

ϕ(x) dµ(x/ε) ∀ϕ ∈ C0(Ω)

such that for some positive constant ν∫
Ω

|ψ(x, x/ε)|q dµε(x) ≤ ν sup
y∈Y

∫
Ω

|ψ(x, y)|q dλ(x) ∀ψ ∈ Lqλ(Ω, C#(Y)) (1)

holds independently of ε. In the following text all underlined symbols should be
understood as sequences indexed with respect to selected positive ε or δ decreasing
to zero and all overlined symbols as sequences indexed with respect to integer r
increasing to∞. For simplicity let us assume µ(Y) = 1 and µ(∂Y) = 0. This forces
e. g. the convergence of µε to λ in sense

lim
ε→0

∫
Ω

|v(x)|p dµε(x) =
∫
Ω

|v(x)|p dλ(x) ∀ v ∈ Lpλ(Ω) ; (2)

more information about such convergence in the vague topology of measures (un-
derstood as in [23], p. 120) can be found in [8], p. 1200.

Moreover in Lemma 12 one additional assumption on the connectedness of µ
(cf. [8], p. 1210) will be needed: let there exist such positive constant c that the
implication (the Poincaré-type inequality)∫

Y

ϕ(y) dµ(y) = 0 ⇒
∫
Y

|ϕ(y)|p dµ(y) ≤ c

∫
Y

|∇µϕ(y)|p dµ(y) (3)
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is valid for any ϕ ∈ H ı pµ#(Y).
Now we are ready to introduce the boundedness, the two-scale convergence

and the strong two-scale convergence of sequences from Lpµε(Ω) with respect to a
measure µ:

Definition 1 (boundedness). Let uε be a sequence in Lpµε(Ω). We say that (uε, µε)
is bounded iff there exists such positive constant a that∫

Ω

|uε(x)|p dµε(x) ≤ a (4)

for all elements of uε and any positive ε.

Definition 2 (two-scale convergence). Let uε be a sequence in Lpµε(Ω). We say
that it two-scale converges to some u0 ∈ Lpλ(Ω, L

p
µ#(Y)) (briefly uε ⇀⇀ u0) iff

lim
ε→0

∫
Ω

uε(x)ψ(x, x/ε) dµε(x) =
∫
Ω

∫
Y

u0(x, y)ψ(x, y) dµ(y) dλ(x) (5)

for every test function ψ ∈ Lqλ(Ω, C#(Y)).

Definition 3 (strong two-scale convergence). Let uε be a sequence in Lpµε(Ω)
that two-scale converges to some u0 ∈ Lpλ(Ω, L

p
µ#(Y)) (in sense of Definition 2).

We say that it strongly two-scale converges to u0 (briefly uε →→ u0) iff

lim
ε→0

∫
Ω

|uε(x)|p dµε(x) =
∫
Ω

∫
Y

|u0(x, y)|p dµ(y) dλ(x) . (6)

Remark 4. Notice that (6) in Definition 3 can be rewritten in the weaker form

lim sup
ε→0

∫
Ω

|uε(x)|p dµε(x) ≤
∫
Ω

∫
Y

|u0(x, y)|p dµ(y) dλ(x)

because uε ⇀⇀ u0 implies

lim inf
ε→0

∫
Ω

|uε(x)|p dµε(x) ≥
∫
Ω

∫
Y

|u0(x, y)|p dµ(y) dλ(x)

automatically; for details see [8], p. 1202.

Remark 5. Obviously for a stationary sequence uε where uε(x) := v(x) and a test
function ψ(x, y) = |v(x)|p/q sgn v(x) (independent of y) (5) with u0(x, y) = v(x)
degenerates to (2). More generally: observe that if u0 ∈ C(Ω, C#(Y)) then uε ⇀⇀ u0
whenever uε(x) := u0(x, x/ε) for all x ∈ Ω. If moreover u0 ∈ C(Ω, C#(Y)) then
uε →→ u0; for details see [8], p. 1203. The same is also true in case u0(x, y) =
u1(x)u2(y) for all x ∈ Ω and y ∈ Y where u1 ∈ Lpλ(Ω) and u2 ∈ C#(Y).
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Remark 6. It is easy to see that Definitions 1, 2 and 3 can be modified to cover the
case that a sequence uε belongs to Lpµε(Ω)

n and u0 to Lpλ(Ω, L
p
µ#(Y)

n). Remarks
4, 5 and 8 and Lemmas 7, 9, 10 and 11 can be then reformulated without any
difficulties. Another simple modification of Definitions 1, 2 and 3 exchanges p and
q mutually. (The first type of generalization will be needed e. g. in Lemma 12, the
second one in Lemma 10.)

In the following text scalar products in Rj for j = n or j = n2 will be empha-
sized by · signs (unlike norms in the usual |.| notation). If ψ ∈ Lpµ#(Y) then the
index � in ψ� will emphasize that ψ� is considered as a constant (in 2-nd variable)
extension of ψ from Ω onto Ω × Y. Standard symbols → and ⇀ for the strong
and weak convergence in various Banach spaces are used, too. In the rest of this
section, assuming that uε is an arbitrary sequence in Lpµε(Ω) and vε (if needed)
an arbitrary sequence in Lqµε(Ω), we shall derive the most interesting and useful
properties of two-scale convergent sequences:

Lemma 7 (on test functions). C∞
0 (Ω, C∞

# (Y)) is dense in Lpλ(Ω, L
p
µ#(Y)). Con-

sequently, if (uε, µε) is bounded and (5) from Definition 2 is true for any ψ ∈
C∞
0 (Ω, C∞

# (Y)) and certain u0 ∈ Lpλ(Ω, L
p
µ#(Y)) then uε ⇀⇀ u0.

Proof. The density of C∞
0 (Ω, C∞

# (Y)) in Lpλ(Ω, L
p
µ#(Y)) follows from [24], p. 73,

and [8], p. 1204. We must only prove that if (5) holds for any ψ ∈ C∞
0 (Ω, C∞

# (Y))
then it is true also for arbitrary ψ ∈ Lqλ(Ω, C#(Y)). Let us consider∫

Ω

uε(x)ψ(x, x/ε) dµε(x) =
∫
Ω

∫
Y

uε(x) (ψ(x, x/ε)− ψr(x, x/ε)) dµε(x)

+
∫
Ω

uε(x)ψr(x, x/ε) dµε(x) −
∫
Ω

∫
Y

u0(x, y)ψr(x, y) dµ(y) dλ(x)

+
∫
Ω

∫
Y

u0(x, y) (ψr(x, y)− ψ(x, y)) dµ(y) dλ(x)

+
∫
Ω

∫
Y

u0(x, y)ψ(x, y) dµ(y) dλ(x)

where ψ
r ⊂ C∞

0 (Ω, C∞
# (Y)) and ψ

r → ψ in Lpλ(Ω, L
p
µ#(Y)) (using the density of

C∞
0 (Ω, C∞

# (Y)) in Lpλ(Ω, L
p
µ#(Y))). Since

lim
r→∞

sup
y∈Y

∫
Ω

|ψ(x, y) − ψr(x, y)|q dµε(x) = 0 ,

the first right-hand-side integral vanishes thanks to the assumed boundedness and
(1) (with help of the Hölder inequality) for r → ∞. Similarly the convergence
ψ
r → ψ implies that the fourth integral can be removed, too. But Definition

3 guarantees that the second and third integrals together tend to zero for each
integer r if ε → 0. Thus, the limit process r → ∞ and ε → 0 yields (5) with
arbitrary ψ ∈ Lpλ(Ω, C#(Y)).
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Remark 8. Various other density results can be found in the cited references; e. g.
in the proof of Theorem 15 we shall need the density of Lpλ(Ω, C#(Y)) both in
Lpλ(Ω, L

p
µ#(Y)) and in Lpλ(Ω, H

ı p
µ#(Y)).

Lemma 9 (on compactness). If (uε, µε) is bounded then there exists such u0 ∈
Lpλ(Ω, L

p
µ#(Y)) that, up to a subsequence, uε ⇀⇀ u0.

Proof. By (1) the choice of a measure µ guarantees the estimate

‖ψε‖Lq
µε(Ω)

≤ ν1/q‖ψ‖Lq
λ(Ω,C#(Y))

for each ψ ∈ Lqλ(Ω, C#(Y)) where ψε(x) := ψ(x, x/ε). For arbitrary positive ε let
us introduce a linear operator Tε applied to arguments ψ ∈ Lqλ(Ω, C#(Y)), using
the Riesz representation theorem (cf. [21], p. 33)

[Tε, ψ] :=
∫
Ω

uε(x)ψε(x) dµε(x) .

Thus, due to the inequality (4) from Definition 1, we can estimate

|[Tε, ψ]| ≤ ‖uε‖Lp
µε (Ω)

‖ψε‖Lq
µε(Ω)

≤ a1/pν1/q‖ψ‖Lq
λ(Ω,C#(Y)) ;

this guarantees that T ε is a bounded sequence in the space dual to Lqλ(Ω, C#(Y))
which can be identified with Lpλ(Ω,M#(Y)) where M#(Y) is the space of periodic
Radon measures on Y (for details see [2], p. 1486, and [32], p. 40). In virtue of
the Alaoglu theorem (see [21], p. 45) then a subsequence from T ε convergent in
the weak ∗ topology can be extracted; this implies that such T0 ∈ Lpλ(Ω,M#(Y))
exists that, up to a subsequence,

lim
ε→0

∫
Ω

uε(x)ψε(x) dµε(x) = lim
ε→0

[Tε, ψ] = [T0, ψ]

=
∫
Ω

∫
Y

u0(x, y)ψ(x, y) dµ(y) dλ(x)

where the existence of some u0 ∈ Lpλ(Ω, C#(Y)) corresponding to T0 follows from
the Riesz representation theorem again; but this is directly (5) from Definition 2.

Lemma 10 (on function products). If uε →→ u0 and vε ⇀⇀ v0 (cf. Remark 6) for
some u0 ∈ Lpλ(Ω, L

p
µ#(Y)) and v0 ∈ Lqλ(Ω, L

q
µ#(Y)) then

lim
ε→0

∫
Ω

uε(x) vε(x) dµε(x) =
∫
Ω

∫
Y

u0(x, y) v0(x, y) dµ(y) dλ(x) .

Proof. Making use of the density guaranteed by Lemma 7, we shall apply for each
positive ε the decomposition∫
Ω

uε(x)vε(x) dµε(x) =
∫
Ω

(uε(x) − ϕδε(x))vε(x) dµε(x) +
∫
Ω

ϕδε(x)vε(x) dµε(x)
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where ϕδ ⊂ C(Ω, C#(Y)), ϕδ → u0 in Lpλ(Ω, L
p
µ#(Y)) and ϕδε(x) := ϕδ(x, x/ε)

for all x ∈ Ω. Definition 2 with respect to Remark 5 gives

lim
δ,ε→0

∫
Ω

ϕδε(x)vε(x) dµε(x) = lim
δ→0

∫
Ω

∫
Y

ϕδ(x, y)v0(x, y) dµε(y) dλ(x)

=
∫
Ω

∫
Y

u0(x, y)v0(x, y) dµ(y) dλ(x) ;

thus it is sufficient to prove

lim
δ,ε→0

∫
Ω

(uε(x) − ϕδε(x))vε(x) dµε(x) = 0 ,

but this requirement, thanks to the boundedness of (vε, µε) by Definition 1 (cf.
Remark 6), can be reduced (using the Hölder inequality) to the stronger one

lim
δ,ε→0

‖uε − ϕδε‖Lp
µε (Ω)

= 0 . (7)

Two Clarkson inequalities

‖uε − ϕδε‖pLp
µε (Ω)

+ ‖uε + ϕδε‖pLp
µε (Ω)

≤ 2p−1
(
‖uε‖pLp

µε (Ω)
+ ‖ϕδε‖pLp

µε (Ω)

)
,

‖uε − ϕδε‖qLp
µε (Ω)

+ ‖uε + ϕδε‖qLp
µε (Ω)

≤ 2
(
‖uε‖pLp

µε (Ω)
+ ‖ϕδε‖pLp

µε (Ω)

)q/p
from [1], p. 37, are available. Using the Definition 3 and taking into account Remark
4, we obtain for p ≤ 2 from the first one

lim
δ,ε→0

‖uε − ϕδε‖pLp
µε (Ω)

≤ lim
δ,ε→0

(
2p−1

(
‖uε‖pLp

µε(Ω)
+ ‖ϕδε‖pLp

µε (Ω)

)
− ‖uε + ϕδε‖pLp

µε (Ω)

)
≤ lim

δ→0

(
2p−1

(
‖u0‖pLp

λ(Ω,L
p
µ#(Y))

+ ‖ϕδ‖pLp
λ(Ω,L

p
µ#(Y))

)
− ‖u0 + ϕδ‖pLp

λ(Ω,L
p
µ#(Y))

)
≤ 2p−1.2 ‖u0‖pLp

λ(Ω,L
p
µ#(Y))

−
(
2 ‖u0‖Lp

λ(Ω,L
p
µ#(Y))

)p
= 0

and for p ≥ 2 from the second one (respecting that q/p = q − 1)

lim
δ,ε→0

‖uε − ϕδε‖qLp
µε(Ω)

≤ lim
δ,ε→0

(
2
(
‖uε‖pLp

µε(Ω)
+ ‖ϕδε‖pLp

µε (Ω)

)q/p
− ‖uε + ϕδε‖qLp

µε (Ω)

)
≤ lim

δ→0

(
2
(
‖u0‖pLp

λ(Ω,L
p
µ#(Y))

+ ‖ϕδ‖pLp
λ(Ω,L

p
µ#(Y))

)q/p
− ‖u0 + ϕδ‖qLp

λ(Ω,L
p
µ#(Y))

)
≤ 2.2q/p ‖u0‖qLp

λ(Ω,L
p
µ#(Y))

−
(
2 ‖u0‖Lp

λ(Ω,L
p
µ#(Y))

)q
= 0 .

Both these results together imply (7).



Two-scale convergence with respect to measures in continuum mechanics 421

Lemma 11 (on strong or weak convergence). Let there exist such u ∈ Lpλ(Ω) that

lim
ε→0

∫
Ω

|uε(x) − u(x)|p dµε(x) = 0 . (8)

Then uε →→ u�. Conversely: if uε ⇀⇀ u0 for some u0 ∈ Lpλ(Ω, L
p
µ#(Y)) then

lim
ε→0

∫
Ω

uε(x)ϕ(x) dµε(x) =
∫
Ω

ũ(x)ϕ(x) dλ(x) ∀ϕ ∈ Lqλ(Ω) (9)

where

ũ(x) :=
∫
Y

u0(x, y) dµ(y) .

Proof. By (2) u is included in all Lpµε(Ω) with a positive ε, hence (8) is well-
defined. To verify the first assertion with uε ⇀⇀ u� (instead of its stronger version
with uε →→ u�), by Definition 2 and Lemma 7 it is sufficient to prove

lim
ε→0

∫
Ω

uε(x)ψε(x) dµε(x) =
∫
Ω

u(x)
∫
Y

ψ(x, y) dµ(y) dλ(x)

for any ψ ∈ C(Ω, C#(Y)) and ψε(x) := ψ(x, x/ε). But Remark 5 shows that
ψε →→ ψ (cf. also Remark 6); thus the preceding equation can be rewritten as

lim
ε→0

∫
Ω

(uε(x)− u(x))ψε(x) dµε(x) = 0

and the Hölder inequality gives the expected result. Moreover (using the estimate
in the norm of Lpµε(Ω))

lim
ε→0

(∫
Ω

|uε(x)|p dµε(x)
)1/p

≤ lim
ε→0

(∫
Ω

|uε(x)− u(x)|p dµε(x)
)1/p

+ lim
ε→0

(∫
Ω

|u(x)|p dµε(x)
)1/p

.

But the first right-hand-side additive term is zero by (8) and dµε in the second one
can be replaced by dλ using (2); this with respect to Definition 3 (with u0(x, y)
substituted by u(x) only) completes the proof of the first assertion. The second
assertion is a simple consequence of Definition 2 where ϕ ∈ Lqλ(Ω) is taken instead
of ψ ∈ Lqλ(Ω, C#(Y)) (being constant in the second variable).

In [2], pp. 1485 and 1488, only the special choice µε = µ = λ was studied; for
this case Lemma 11 guarantees that

uε → u ⇒ uε →→ u� and uε ⇀⇀ u0 ⇒ uε ⇀ ũ

in classical sense of strong and weak convergence (→ and⇀ act in Lpλ(Ω)). In such
case a lot of results from the standard theory of Sobolev spaces and functional
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analysis is available (e. g. Lemma 9 can be understood as a stronger version of the
well-known Eberlein - Shmul’yan theorem – cf. [41], p. 201, and [20], p. 197), but
this is not true in more complicated cases where namely an appropriate definition
of gradients may be far from trivial. We shall introduce the gradients in the same
way as in [17], p. 4: for any ϕ ∈ H ı pµ#(Y)

∇µϕ(y) := Pµ(y)∇ϕ(y) ∀ y ∈ Y

where Pµ ∈ Lpµ#(Y)
n.n denotes the operator of orthogonal projection onto the

local tangent space of µ (defined in [17], p. 3, exactly). Moreover, following [8],
p. 1206, we can make use of the operator divµ coming from the relation of the
Green-Ostrogradskǐı type∫

Y

v divµΦdµ = −
∫
Y

Φ · ∇µv dµ ∀ v ∈ C∞
# (Y) ∀Φ ∈ Xq

µ#(Y)

where the class Xq
µ#(Y) (of vector fields “tangent to µ”) includes all elements of

Lqµ#(Y)
n whose divergences (in distributional sense) belong to Lqµ#(Y); X

p
µ#(Y)

is defined similarly. The space H ı pµ#(Y) is the completion of C∞
0 (Ω, C∞

# (Y)) in the
norm

‖ϕ‖
Hı pµ#(Y)

:= ‖ϕ‖Lp
µ#(Y) + ‖∇µϕ‖Lp

µ#(Y)n

for any ϕ ∈ C∞
0 (Ω, C∞

# (Y)); then the space Lpλ(Ω, H
ı p
µ#(Y)) can be introduced,

too. We intend to apply the projector Pµ especially in another context, taking a
macrostructural variable x ∈ Ω (not only y ∈ Y) into consideration: instead of
Pµ we shall have Pµε with a positive ε such that (similarly to Remark 5, cf. also
Remark 6, for details see [8], p. 1203) Pµε →→ Pµ and

∇µεϕ(x) := Pµε(x)∇ϕ(x) ∀x ∈ Ω

for any ϕ ∈ H ı pµε(Ω); moreover if ϕ1 ∈ Lpλ(Ω, H
ı p
µ#(Y)

n) and ϕε is a sequence of
elements from H ı pµε (Ω) then

∇ϕε ⇀⇀ ϕ1 ⇒ Pµε∇ϕε ⇀⇀ Pµϕ1 (10)

(this can be verified using Lemma 10). If ψ ∈ Lpλ(Ω, H
ı p
µ#(Y)) then the double dot in

∇µ̈ψ will indicate that the operator ∇µ is applied to the second (microstructural)
variable only. (In the proof of Theorem 15 also the single or double dot as an index
of ∇ will demonstrate that this operator is related to the first or second variable
only.) The following important generalization of Lemma 9 studies the behaviour of
gradients of some sequences from the point of view of the two-scale convergence:

Lemma 12 (on gradients). Let there exist such positive constant c that (3) is
valid for any ϕ ∈ H ı pµ#(Y). If (uε, µε) and (∇µεuε, µε) are bounded then some u ∈
H ı pλ (Ω) and u1 ∈ Lpλ(Ω, H

ı p
µ#(Y)) exist such that, up to a subsequence, uε ⇀⇀ u�

and ∇µεuε ⇀⇀ ∇u� +∇µ̈u1 (in sense of Remark 6).
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Proof. By Lemma 9 and Definition 2 (cf. also Remark 6) such u0 ∈ Lpλ(Ω, L
p
µ#(Y))

and u1 ∈ Lpλ(Ω, L
p
µ#(Y)

n) exist and from uε such subsequence can be extracted
that uε ⇀⇀ u0 and ∇uε ⇀⇀ u1; in other words: (5) must be true for all ψ ∈
Lpλ(Ω, C#(Y)) and

lim
ε→0

∫
Ω

∇uε · Ψ(x, x/ε) dµε(x) =
∫
Ω

∫
Y

u1(x, y) · Ψ(x, y) dµ(y) dλ(x) (11)

for all Ψ ∈ Lpλ(Ω, C#(Y)n). Especially for any x ∈ Ω and y ∈ Y let us choose
Ψ(x, y) = ϕ(x)Φ(y) where ϕ ∈ C∞

0 (Ω) and Φ ∈ Xq
µ#(Y). Following [8], p. 1212, for

every positive ε we are able to integrate by parts

ε

∫
Ω

∇uεϕ(x) · Φ(x/ε) dµε(x) (12)

= −ε
∫
Ω

uε(x)∇ϕ(x) · Φ(x/ε) dµε(x) −
∫
Ω

uε(x)ϕ(x)divµΦ(x/ε) dµε(x)

and thanks to the boundedness of (uε, µε) and (∇µεuε, µε) to obtain

0 = lim
ε→0

∫
Ω

uε(x)ϕ(x)divµΦ(x/ε) dµε(x) (13)

=
∫
Ω

ϕ(x)
∫
Y

u0(x, y)divµΦ(y) dµ(y) dλ(x) .

The existence of a positive constant c from (3) independent of ϕ ∈ H ı pµ#(Y) forces
that ∫

Y

Φ(y) · Ψ(y) dµ(y) = 0 ∀Φ ∈ W ∀Ψ ∈ W⊥ (14)

with
W := {Φ ∈ Xq

µ#(Y) : divµΦ = 0} ,
W⊥ := {Ψ ∈ Xp

µ#(Y) : PµΨ = ∇µv for some v ∈ H ı pµ#(Y)}

and ∫
Y

v(y)w(y) dµ(y) = 0 ∀ v ∈ V ∀w ∈ V⊥ (15)

with
V := {v ∈ Lpµ#(Y) : v = divµΦ for some Φ ∈ Xp

µ#(Y)} ,
V⊥ := {w ∈ Lqµ#(Y) : w = a for some a ∈ R} ;

the extensive verification of these seemingly simple facts, generalizing the classical
result (“orthogonals of divergence-free functions are exactly the gradients” if µε =
µ = λ) from [2], p. 1492, with q = 2 (using the Fourier analysis), and from [22],
p. 329, for a general q > 1 (based on the absolute continuity on line segments in
standard Sobolev spaces by [44], p. 44), to periodic Sobolev spaces with general
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measures, can be found in [8], p. 1210 (in [42] the assumption q = 2 cannot be
removed easily). Thus for a fixed x ∈ Ω we know from (13) and (15) that u0(x, y)
is a constant on Y which gives a chance to set u(x) := u0(x, y) independently
of y ∈ Y. In particular let us consider Φ ∈ W only. Then (12) (divided by ε)
degenerates to∫

Ω

∇uε(x)ϕ(x) · Φ(x/ε) dµε(x) = −
∫
Ω

uε(x)∇ϕ(x) · Φ(x/ε) dµε(x) ,

the limit passage (11) and (5) gives∫
Ω

ϕ(x)
∫
Y

u1(x, y) · Φ(y) dµ(y) dλ(x) = −
∫
Ω

u(x)∇ϕ(x) ·
∫
Y

Φ(y) dµ(y) dλ(x)

=
∫
Ω

ϕ(x)∇u(x) ·
∫
Y

Φ(y) dµ(y) dλ(x)

and thanks to the density of C∞
0 (Ω) in Lpλ(Ω) (the choice of ϕ in C∞

0 (Ω) was
arbitrary) ∫

Y

(u1(x, y)−∇u(x)) · Φ(y) dµ(y) = 0 for λ - a. e. x ∈ Ω .

¿From (14) we can deduce

Pµ(y)u1(x, y)−∇u(x) = ∇µ̈u1(x, y) for λ - a. e. x ∈ Ω and for µ - a. e. y ∈ Y

with certain u1 ∈ Lpλ(Ω, H
ı p
µ#(Y)

n). Let us remember a sequence Pµε from (10).
Since ∇uε ⇀⇀ u1 (from (11)), ∇µεuε = Pµε∇uε ⇀⇀ Pµu1 = ∇u� +∇µ̈u1.

3 Analysis of a model elliptic problem

To make the notation as clear as possible, we shall introduce some special function
classes. Let Carp(Ω,Y,Rm)k be a class of functions b : Ω×Y×Rm -→ Rk (m and
k are positive integers) with the following properties:

(a) b is Y-periodic. Moreover for each w ∈ Rm (later m = n or m = n(1 + n) to-
gether with k = n or k = n2 will be used), for λ - a. e. x ∈ Ω and for µ - a. e. y ∈
Y the growth condition |b(x, y, w)| ≤ βb(x, y)+ γb|w|p−1 is satisfied with some
positive γb and βb ∈ Lqλ(Ω, C#(Y)) (by (2) also βb ∈ Lqµε(Ω, C#(Y)) for any
positive ε).

(b) bϕ(x, y) := b(x, y, ϕ(x, y)) applied to all x ∈ Ω and y ∈ Y defines for any ϕ ∈
Lpλ(Ω, C#(Y)m) a continuous mapping bϕ : Lpλ(Ω, C#(Y)m) -→ Lqλ(Ω, C#(Y)k).

(In many cases the Nemytskǐı mappings from [32], p. 36, are useful to verify these
properties.) A class Carp(∂Ω,Rn)n can be defined similarly with small changes: in
particular m = k = n, Ω is replaced by ∂Ω, the modified growth condition from
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(a) is valid with some positive γg and βg ∈ Lpσ(∂Ω), σ is the Hausdorff measure on
∂Ω, in (a) and (b) the second variable is missing, the requirement on periodicity
in (a) disappears.

Now we are ready to formulate our model variational problem:

Problem 13. Find u ∈ Uε such that∫
Ω

a(x, x/ε, u(x),∇µεu(x)) · ∇µεv(x) dµε(x) (16)

+
∫
Ω

f(x, x/ε, u(x)) · v(x) dµε(x) +
∫
∂Ω

g(x, u(x)) · v(x) dσ(x) = 0

for all v from certain subspace Uε of H ı pµε (Ω)
n and their suitable extensions to

Lpσ(∂Ω)
n.

To be able to discuss the solvability of this problem, let us suppose:

(c) Some prescribed boundary conditions on ∂Ω (of the Dirichlet type) force the
equivalence of norms

‖v‖
Hı pµε (Ω)n

, ‖∇µεv‖Lp
µε(Ω)

n.n , ‖∇µεv‖Lp
µε(Ω)

n.n + ‖v‖Lp
σ(∂Ω)n

for any v ∈ Uε (which can be identified with the Friedrichs-type inequality).

(d) The functions a, f and g (in classical mechanics: stress tensors determined by
strain tensors and material characteristics from the constitutive law, volume
loads and surface loads) belong to the following classes:

a ∈ Carp(Ω,Y,Rn(1+n))n.n , f ∈ Carp(Ω,Y,Rn)n , g ∈ Carp(∂Ω,Rn)n .

The estimates

a(x, y, z, θ) · θ ≥ κ|θ|p − ϑa(x, y)(|z|p−s + |θ|p−s)− ζa(x, y) ,
f(x, y, z) · z ≥ −ϑf (x, y)|z|p−s − ζf (x, y) ,
g(x̃, z) · z ≥ −ϑg(x̃)|z|p−s − ζg(x̃)

are true for λ - a. e. x ∈ Ω, for µ - a. e. y ∈ Y, for σ - a. e. x̃ ∈ ∂Ω and each z ∈
Rn and θ ∈ Rn.n (w = (z, θ) from (a) is considered) with some positive constant
κ, real s satisfying the inequality 1 < s < p, ϑa and ϑf from L

p/s
λ (Ω, C#(Y)),

ϑg from L
p/s
σ (∂Ω), ζa and ζf from Lλ(Ω, C#(Y)), ζg from Lσ(∂Ω) (by (2) also

ϑa and ϑf belong to Lp/sµε (Ω, C#(Y)), ζa and ζf to Lµε(Ω, C#(Y)) for any
positive ε). Moreover

(a(x, y, z, θ)− a(x, y, z, θ̃)) · (θ − θ̃) > 0 (17)

independently of the choice of θ̃ ∈ Rn.n other than θ (i. e. a is strictly mono-
tone).
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In the rest of this section (and of the whole paper) we shall derive two results:
the first one that Problem 13 with a finite positive ε has already a solution (The-
orem 14) and the second one that under certain physically realistic conditions the
limit passage ε→ 0 is possible (Theorem 15). These results generalize those from
[2], p. 1503, naturally in several directions (probably the most visible is that the as-
sumption “on non-perforation” µε = µ = λ was removed); the exact formulations
and proofs follow:

Theorem 14 (existence result with a finite ε). Let (a), (b), (c) and (d) be satis-
fied. Then for any positive ε Problem 13 has at least one solution.

Proof. Let Aε be a mapping of Uε into its dual space by the definition

〈Aεu, v〉 =
∫
Ω

a(x, x/ε, u(x),∇µεu(x)) · ∇µεv(x) dµε(x) (18)

+
∫
Ω

f(x, x/ε, u(x)) · v(x) dµε(x) +
∫
∂Ω

g(x, u(x)) · v(x) dσ(x)

for every u, v ∈ Uε. By [19], p. 279, if Aε is a© coercive, b© demicontinuous, c©
bounded and d© the estimate

lim sup
r→∞

〈Aεv
r −Aεv, v

r − v〉 ≤ 0 (19)

together with vr ⇀ v forces vr → v for any sequence vr ⊂ Uε and for a corre-
sponding v ∈ Uε then Aε is also surjective; this implies that the integral equation

〈Aεu, v〉 = 0 ∀ v ∈ Uε

must have a solution u ∈ Uε. Thus the proof of the existence of at least one solution
of Problem 13 can be reduced to four steps consisting of the verification of a©, b©,
c© and d©:

a© Following [24], p. 65, we shall use the inequality for any positive τ , η and ω

η

τp−s
(τω)p−s ≤ s

p

( η

τp−s

)p/s
+
p− s
p

(τω)p =
s

p
τ−p(p−s)/sηp/s +

p− s
p

τpωp

valid for any positive τ , η and ω; in the subsequent estimates several times
special η and ω will be applied. Let us consider an arbitrary v ∈ Uε. ¿From



Two-scale convergence with respect to measures in continuum mechanics 427

(d) we receive∫
Ω

a(x, x/ε, v(x),∇µεv(x)) · ∇µεv(x) dµε(x) ≥ κ‖∇µεv‖
p
Lp
µε (Ω)

n.n

−s
p
τ−p(p−s)/s‖ϑa‖p/s

L
p/s
µε (Ω,C#(Y))

− p− s
p

τp‖v‖pUε
− ‖ζa‖Lµε (Ω,C#(Y)) ,∫

Ω

f(x, x/ε, v(x)) · v(x) dµε(x)

≥ −s
p
τ−p(p−s)/s‖ϑf‖p/s

L
p/s
µε (Ω,C#(Y))

− p− s
p

τp‖v‖p
Lp
µε (Ω)

− ‖ζf‖Lµε(Ω,C#(Y)) ,∫
∂Ω

g(x, v(x)) · v(x) dσ(x)

≥ −s
p
τ−p(p−s)/s‖ϑg‖p/s

L
p/s
σ (∂Ω)

− p− s
p

τp‖v‖p
Lp
σ(∂Ω)

− ‖ζg‖Lσ(∂Ω)

and consequently

〈Aεv, v〉 ≥ κ‖∇µεv‖
p
Lp
µε (Ω)

n.n

− p− s
p

τp
(
‖v‖pUε

+ ‖v‖p
Lp
µε (Ω)

n + ‖v‖Lσ(∂Ω)n

)
− Sτ

with certain real constant Sτ independent of v. Especially for τ small enough

〈Aεv, v〉 ≥ κ1‖v‖pUε
− κ2 (20)

holds by (c) (due to the equivalence of norms) with some positive constants κ1
and κ2 independent of v; this implies the coerciveness of Aε (cf. [19], p. 266)
evidently.

b© In Uε let us choose arbitrary u and v and any sequence ur → u. We have

〈Aεu
r −Aεu, v〉

=
∫
Ω

(a(x, x/ε, ur(x),∇µεu
r(x))− a(x, x/ε, u(x),∇µεu(x)))

· ∇µεv(x) dµε(x)

+
∫
Ω

(f(x, x/ε, ur(x)) − f(x, x/ε, u(x))) · v(x) dµε(x)

+
∫
∂Ω

(g(x, ur(x))− g(x, u(x))) · v(x) dσ(x) .

Thus (b) (with help of the Hölder inequality) forces the demicontinuity of Aε

(cf. [19], p. 270).

c© Let us consider u and v as in b© again. ¿From (a) with a (where w has to
understood as in (d)), f and g substituted to b we obtain

|a(x, x/ε, u(x),∇µεu(x))| ≤ βa(x, x/ε) + γa
(
|u(x)|p−1 + |∇µεu(x)|p−1

)
,

|f(x, x/ε, u(x))| ≤ βf (x, x/ε) + γf |u(x)|p−1 ,

|g(x̃, u(x̃))| ≤ βg(x̃) + γg|u(x̃)|p−1



428 J. Vala

for λ - a. e. x ∈ Ω and for σ - a. e. x̃ ∈ ∂Ω which directly from the definition
(18) by the Hölder inequality yields

〈Aεu, v〉 ≤
(
‖βa‖Lµε (Ω,C#(Y)) + γa‖u‖p−1

Uε

)
‖v‖Uε

+
(
‖βf‖Lµε (Ω,C#(Y)) + γf‖u‖p−1

Lp
µε(Ω)

n

)
‖v‖Lp

µε(Ω)
n

+
(
‖βg‖Lσ(∂Ω) + γg‖u‖p−1

Lp
σ(∂Ω)

)
‖v‖Lp

σ(∂Ω)n .

Making use of (c) we can thus see that independently of u and v such positive
β and γ exist that

〈Aεu, v〉 ≤
(
β + γ‖u‖p−1

Uε

)
‖v‖Uε .

Let us introduce the unit ball Bε := {v ∈ Uε : ‖v‖Uε ≤ 1}. The norm of Aεu
in the space dual to Uε then is

sup
v∈Bε

〈Aεu, v〉 ≤ β + γ‖u‖p−1
Uε

which guarantees the boundedness of Aε (cf. [19], p. 266).

d© Unlike b© in Uε let us choose an arbitrary v and any sequence vr ⇀ v now.
We have

〈Aεv
r −Aεv, v

r − v〉

=
∫
Ω

(a(x, x/ε, vr(x),∇µεv
r(x)) − a(x, x/ε, vr(x),∇µεv(x)))

· (∇µεv
r(x)−∇µεv(x)) dµε(x)

+
∫
Ω

(a(x, x/ε, vr(x),∇µεv(x)) − a(x, x/ε, v(x),∇µεv(x)))

· (∇µεv
r(x)−∇µεv(x)) dµε(x)

−
∫
Ω

(f(x, x/ε, vr(x)) − f(x, x/ε, v(x))) · v(x) dµε(x)

+
∫
Ω

f(x, x/ε, v(x)) · (vr(x) − v(x)) dµε(x)

−
∫
∂Ω

(g(x, vr(x)) − g(x, v(x))) · v(x) dσ(x)

+
∫
∂Ω

g(x, v(x)) · (vr(x)− v(x)) dσ(x) .

By (c) vr → v in Lpµε(Ω)
n; thus the limit passage (based on the Hölder in-

equality) with respect to the continuity of a, f and g from (b) gives

lim sup
r→∞

〈Aεv
r −Aεv, v

r − v〉

= lim sup
r→∞

∫
Ω

(a(x, x/ε, vr(x),∇µεv
r(x)) − a(x, x/ε, vr(x),∇µεv(x)))

· (∇µεv
r(x) −∇µεv(x)) dµε(x) .



Two-scale convergence with respect to measures in continuum mechanics 429

Let us suppose vr →/ v and believe that the inequality (19) is fulfilled. Then
using (17) from (d) (the only part of (d) that was not needed in a©) we deduce
that

lim sup
r→∞

〈Aεv
r −Aεv, v

r − v〉 > 0

which is in contrary with (19) immediately.

Theorem 14 informs us that a set U 0ε of solutions of Problem 13 cannot be
empty. Let U be a set of all two-scale limits v of such sequences vε with elements
from Uε that vε ⇀⇀ v and ∇µεvε ⇀⇀ ∇v� +∇µ̈v1. Let U ′ be a subset of U (defined
in the same way) where moreover ∇µεvε →→ v� is required. For the study of limit
behaviour of (16) with ε→ 0 (to avoid divergence sequences of solutions from U 0ε),
using the simplified notation

â(x, y, v(x)) := a(x, y, v(x), û0(x, y)) , (21)

û0(x, y) := ∇u(x) +∇µφ
r(x, y) + δφ(x, y) ,

ûε(x) := û0(x, x/ε)

for each x ∈ Ω and y ∈ Y with any positive δ, φr ∈ Lpλ(Ω, C#(Y)n) (r is a positive
integer), φ ∈ Lpλ(Ω, C#(Y)n.n) and v = u or v = uε, we shall slightly regulate the
choice of “loads” f and g and “strain-stress relations” a with respect to µε:

(e) If uε and vε are some sequences of elements from Uε with two-scale limits u�
and v� and and Φε is some sequence of elements from Lpλ(Ω, C#(Y)n.n) with
a two-scale limit Φ0 where u, v ∈ H ı pλ (Ω)n and Φ0 ∈ Lpλ(Ω, L

p
µ#(Y)

n.n) then

lim
ε→0

∫
Ω

â(x, x/ε, uε(x)) · Φε(x) dµε(x)

=
∫
Ω

∫
Y

â(x, y, u(x)) · Φ0(x, y) dµ(y) dλ(x) ,

lim
ε→0

∫
Ω

f(x, x/ε, uε(x)) · vε(x) dµε(x)

=
∫
Ω

∫
Y

f(x, y, u(x)) dµ(y) · v(x) dλ(x) ,

lim
ε→0

∫
∂Ω

g(x, uε(x)) · vε(x) dσ(x) =
∫
∂Ω

g(x, u(x)) · v(x) dσ(x) .

The property (e) looks rather difficult to be verified; thus (for illustration) we
shall demonstrate how it could be simplified (using sufficient conditions) in special
cases: If a, f and g are independent of the third variable explicitly then the first
two relations can be seen as simple consequences of Definition 2, only the third
one needs vε → v in Lpσ(∂Ω)

n which (except pure Dirichlet problems, favourable
for matematicians, but rare in practice) may not be trivial (the properties of
extensions of vε onto ∂Ω have to be studied). If (for general a, f and g again)
µε = µ = λ then Lemma 11 results that uε has a weak limit in U = Uε (which
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is a subspace of H ı pλ (Ω)n here) immediately, hence (if the Sobolev imbedding
theorem holds), up to a subsequence, uε → u in U and (if the trace theorem holds)
uε → u in Lpσ(∂Ω)

n. (This is even true for a large class of domains Ω without any
respect to a, f and g; the geometrical properties of such class are studied in [28],
pp. 58 and 219, in great details, including perverse configurations uncovered by
standard theorems.) Then (e) can be checked using continuity arguments from (b)
only; Lemma 10 can be helpful, too. Also if we only know that (for any reason)
uε is bounded in H ı pλ (Ω)n then the Eberlein - Shmul’yan theorem implies, up to
a subsequence, uε ⇀ u in H ı pλ (Ω)n and the same approach can be applied. In
more complicated cases simple criteria are not known; nevertheless, we shall try
to formulate a general convergence result:

Theorem 15 (existence result with ε→ 0). Let the assumptions of Theorem 14
and (e) be fulfilled. Then the limit process ε → 0 converts the integral equation
(16) from Problem 13 into its limit form∫

Ω

∫
Y

a(x, y, u(x),∇u(x) +∇µ̈u1(x, y)) dµ(y) · ∇v(x) dλ(x) (22)

+
∫
Ω

∫
Y

f(x, y, u(x)) dµ(y) · v(x) dλ(x) +
∫
∂Ω

g(x, u(x)) · v(x) dσ(x) = 0

for all v ∈ U ′ which has at least one solution u ∈ U , u1 ∈ Lpλ(Ω, H
ı p
µ#(Y)

n).

Proof. For the sake of brevity let us introduce the notation

αε(x) := a(x, x/ε, uε(x),∇µεuε(x))

for every x ∈ Ω. (Since by Theorem 14 U 0ε �= ∅, the choice of some uε ∈ U 0ε is
possible.) Using (a) we obtain in the same way as in c© in the proof of Theorem
14

|αε(x)|q ≤
(
βa(x, x/ε) + γa

(
|uε(x)|p−1 + |∇µεuε(x)|

)p−1
)q

≤ 2q−1βqa(x, x/ε) + 22(q−1)γqa (|uε(x)|p + |∇µεuε(x)|p)

for λ - a. e. x ∈ Ω and consequently

‖αε‖qLq
µε (Ω)

n.n ≤ 2q−1
(
‖βa‖qLµε(Ω,C#(Y)) + 2q−1γa‖uε‖pUε

)
. (23)

The convergence of µε (cf. (2)) enables us to find κ1 and κ2 in (20) from c©
independently of both v and ε; in particular (for v = uε ∈ U 0ε) (20) can be written
in the form

0 = 〈Aεuε, uε〉 ≥ κ1‖uε‖pUε
− κ2

showing that both (uε, µε) and (∇µεuε, µε) are bounded (in sense of Definition
1 and Remark 6). Thanks to (23) the same is true for (αε, µε). According to
Lemma 9 and Lemma 12, up to subsequences, then uε ⇀⇀ u�, αε ⇀⇀ α0 and
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∇µεuε ⇀⇀ ∇u� +∇µ̈u1 for some u ∈ H ı pλ (Ω)n, α0 ∈ Lpλ(Ω, L
p
µ#(Y)

n.n) and u1 ∈
Lpλ(Ω, H

ı p
µ#(Y)

n). Unfortunately no reasonable relation between α0 and u with u1
is available now. To investigate it, let us start with the integration of (17) from
(d) with y = x/ε, z = uε(x), θ = ∇µεuε(x) and θ̃ = ûε(x) over Ω. We receive∫

Ω

(a(x, x/ε, uε(x),∇µεuε(x)) − a(x, x/ε, uε(x), ûε(x)))

· (∇µεuε(x) − ûε(x)) dµε(x) ≥ 0

which with help of (16) gets the form

−
∫
Ω

f(x, x/ε, uε(x)) · uε(x) dµ−
∫
∂Ω

g(x, uε(x)) · uε(x) dσ(x)

−
∫
Ω

â(x, x/ε, uε(x)) · ∇µεuε(x) dµε(x)

+
∫
Ω

â(x, x/ε, uε(x)) · ûε(x) dµε(x) −
∫
Ω

αε(x) · ûε(x) dµε(x) ≥ 0 .

But the initial three left-hand-side integrals are exactly those from (e), only vε = uε
and also Φε = ∇µεuε in the third one had to be set. Since ûε →→ û0 (by Remark
5), the same can be repeated with Φε = −ûε for the fourth one; for the last one
αε ⇀⇀ α0 has been derived yet. In this way we obtain

−
∫
Ω

∫
Y

f(x, y, u(x)) · u(x) dµ(y) dλ(x) −
∫
∂Ω

g(x, u(x)) · u(x) dσ(x)

−
∫
Ω

∫
Y

â(x, y, u(x)) · (∇u(x) +∇µ̈u1(x, y)) dµ(y) dλ(x)

+
∫
Ω

∫
Y

(â(x, y, u(x)) − α0(x, y)) · û0(x, y) dµ(y) dλ(x) ≥ 0

and in another order (using δ, φ and φr)

−
∫
Ω

∫
Y

f(x, y, u(x)) · u(x) dµ(y) dλ(x) −
∫
∂Ω

g(x, u(x)) · u(x) dσ(x) (24)

−
∫
Ω

∫
Y

α0(x, y) dµ(y) · ∇u(x) dλ(x)

−
∫
Ω

∫
Y

α0(x, y) · ∇µφ
r(x, y) dµ(y) dλ(x)

+
∫
Ω

∫
Y

â(x, y, u(x)) · ∇µ̈ (φr(x, y)− u1(x, y)) dµ(y) dλ(x)

+ δ

∫
Ω

∫
Y

(â(x, y, u(x))− α0(x, y)) · φ(x, y) dµ(y) dλ(x) ≥ 0 .
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But by Definition 2 and (16) (with respect to (e) again) we have∫
Ω

∫
Y

f(x, y, u(x)) · u(x) dµ(y) dλ(x) +
∫
∂Ω

g(x, u(x)) · u(x) dσ(x)

+
∫
Ω

∫
Y

α0(x, y) dµ(y) · ∇u(x) dλ(x)

= lim
ε→0

∫
Ω

f(x, x/ε, uε(x)) · u(x) dµε(x) + lim
ε→0

∫
∂Ω

g(x, uε(x)) · u(x) dσ(x)

+ lim
ε→0

∫
Ω

αε(x) · ∇u(x) dµε(x) = 0

and the first, second and third left-hand-side integrals in (24) vanish. For the
fourth one we have ∫

Ω

∫
Y

α0(x, y) · ∇µφ
r(x, y) dµ(y) dλ(x)

= lim
ε→0

∫
Ω

αε(x) · ∇µεφ
r(x, x/ε) dµε(x) ,

but also

∇µεφ
r(x, x/ε) = Pµε(x)∇.. φr(x, x/ε)

= ε (Pµε(x)∇φr(x, x/ε)− Pµε(x)∇. φr(x, x/ε))

and (due to the boundedness of αε) the last limit is zero, too. In particular it
is always possible to choose φ

r → u1 in Lpλ(Ω, H
ı p
µ#(Y)

n) (as in Remark 8); the
limit passage r → ∞ then removes the fifth integral. Finally, divided by δ, (24)
degenerates to

lim
r→∞

∫
Ω

∫
Y

(a(x, y, u(x),∇u(x) +∇µ̈φ
r(x, y) + δφ(x, y)) − α0(x, y))

·φ(x, y) dµ(y) dλ(x) ≥ 0

which, in particular for δ = 1/r, can be (thanks to the continuity of a from (b))
rewritten as ∫

Ω

∫
Y

ς(x, y) · φ(x, y) dµ(y) dλ(x) ≥ 0 (25)

where
ς(x, y) := a(x, y, u(x),∇u(x) +∇µ̈φ(x, y)) − α0(x, y) .

Let us consider (consulting Remark 8 again) a sequence ςr of elements from
Lpλ(Ω, C#(Y)n.n) with the strong limit ς in Lpλ(Ω, L

p
µ#(Y)

n.n) . It remains to prove
that the norm of each element of this sequence in Lpλ(Ω, L

p
µ#(Y)

n.n) is zero. Indeed,
if this is true then the norm of ς must be zero, too, and

α0(x, y) = a(x, y, u(x),∇u(x) +∇µ̈u1(x, y))
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for λ - a. e. x ∈ Ω and for µ - a. e. y ∈ Y which yields (22). Applying the famous
Minty trick (cf. [20], p. 261)

φ(x, y) = ε|ςr(x, y)|p−1 sgn ςr(x, y)

with ε ∈ {−1, 1} to (25), we obtain

ε

∫
Ω

∫
Y

|ςr(x, y)|p dµ(y) dλ(x) ≥ 0

which (independently of r) forces ςr to be the zero point of Lpλ(Ω, L
p
µ#(Y)

n). Now
it is easy to finish this proof: ¿From the just verified two-scale convergence of αε
we have

lim
ε→0

∫
Ω

a(x, x/ε, uε(x),∇µεuε(x)) · ∇µεv(x) dµε(x)

=
∫
Ω

∫
Y

a(x, y, u(x),∇u(x) +∇µ̈u1(x, y)) dµ(y) · ∇v(x) dλ(x)

which, making use of Lemma 10, demonstrates how the first left-hand-side additive
term from (16) tends to the corresponding one from (22) if ε → 0. The same for
the second and third terms follows from the second and third equations of (e)
(with vε unchanged).
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