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Abstract. We present existence, non-existence and multiplicity results for
periodic solutions of forced nonlinear oscillators at resonance, the nonlin-
earity being a bounded perturbation of a force deriving from an isochronous
potential, i.e. a potential leading to free oscillations that all have the same
period. The class of nonlinearities considered includes jumping nonlineari-
ties, as well as singular forces of repulsive type. As particular cases of the
existence results, we obtain conditions of Landesman-Lazer type. We also
investigate the problem of boundedness of the solutions.
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1 Introduction

In this note, we summarize some results obtained recently in [2] and [3]. We refer
the reader to these papers for a more detailed exposition.

We consider the following class of nonlinear oscillators

x′′ + V ′(x) + g(x) = p(t), (1)

in situations of resonance. The following hypotheses, where k ∈ N∗ and a ∈
[−∞, 0), are assumed to hold throughout:

This is an overview article.
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(Hk)

V : (a,+∞) → R is a 2π/k-isochronous, strictly convex poten-
tial whose derivative is locally lipschitzian; g : (a,+∞) → R is
bounded and locally lipschitzian; p belongs to L1

loc(R) and is 2π-
periodic.

By convention, we suppose that the minimum of V is reached at 0, so that
V ′(0) = 0. By a 2π/k-isochronous potential, we mean that all nontrivial solutions
of

x′′ + V ′(x) = 0
are of (minimal) period 2π/k. We also assume that V satisfies either

(S) lim
x→+∞

V ′(x)
x

=
k2

4
and lim

x→a+

V ′(x)
x

= +∞,

where a ∈ [−∞, 0), or

(NS) lim
x→+∞

V ′(x)
x

= α > 0 and lim
x→−∞

V ′(x)
x

= β > 0

(in which case a = −∞).

The first case is referred to as the singular case, because when a �= −∞, it cor-
responds to a repulsive singularity which, by convention, has been placed here on
the negative side. In the second case, which is referred to as the non-singular case,
V ′ is asymptotic to a so-called jumping or asymmetric nonlinearity αx+ − βx−,
where x+ = max{x, 0}, x− = max{−x, 0}. The isochronism assumption implies
that

1√
α
+

1√
β

=
2
k
. (2)

We refer to [1] and [3] for examples of isochronous potentials. It is shown in
[3] (see also Corollary 4 below) that perturbations of functions deriving from an
isochronous potential cover a large class of nonlinearities.

Consider equation (1) where V, g, p satisfy hypothesis (Hk) for some k ∈ N∗,
and V satisfies either (S) or (NS). Let us define the function Φ by

Φ(θ) =
∫ 2π

0

p(t)ψ(t+ θ) dt , (3)

where ψ denotes either | cos(kt/2)| in case (S) holds, or the solution of

x′′ + αx+ − βx− = 0, x(0) = 1, x′(0) = 0,

when (NS) holds. Notice that Φ, as ψ, is of period 2π/k. Let us also define

G(ρ) =
∫ 2π

0

g(ρψ(t))ψ(t) dt ,

and its limits
G+ = lim inf

ρ→+∞
G(ρ) and G+ = lim sup

ρ→+∞
G(ρ) .

We show in [2], [3] and [4] that the function Φ plays a key role in the problem of
existence of 2π-periodic solutions of (1) as well as in the problem of boundedness
of the solutions of equation (1).
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2 Periodic solutions

Concerning the existence of periodic solutions, we prove in [3] the following theo-
rem.

Theorem 1. Let Φ,G+, G
+ be defined as above. We have the following :

(i) If there exists G∗ ∈ [G+, G
+], which is a regular value of Φ, and if the number

of zeros of Φ − G∗ in [0, 2π/k) is different from 2, equation (1) has at least
one 2π-periodic solution.

(ii) If there exist two regular values G1, G2 ∈ [G+, G
+] of Φ such that the number

of zeros of Φ−G1 and Φ−G2 in [0, 2π/k) are different, equation (1) admits
an unbounded sequence of 2π-periodic solutions.

(iii) If [G+, G
+] contains no critical value of Φ, the set of 2π-periodic solutions of

(1) is bounded.

The existence condition includes the case of a function Φ−G∗ of constant sign.
In particular, the result applies if

maxΦ < G+ or minΦ > G+ . (4)

That situation has been treated by Krasnosel’skii and Mawhin [9] for perturbations
of a linear oscillator.

Arguing as in [9], it can be shown that, when g has a sublinear primitive,
G+ = G+ = 0. Hence, if one considers, for instance, the equation

x′′ + αx+ − βx− + sin(x) = p(t) ,

where x+ = max{x, 0}, x− = max{−x, 0}, and α, β satisfy condition (2) with
k = 1, or the equation

x′′ − 1
4(x+ 1)3

+
(x + 1)

4
+ sin(x) = p(t) ,

for both of which g(x) = sin(x), it results from Theorem 1 that these equations
have at least one 2π-periodic solution if the number of zeros (supposed to be
simple), in [0, 2π), of the function Φ defined by (3), is different from 2.

Several earlier results can be obtained as particular cases of the above theorem,
corresponding to situations where the image of Φ does not intersect [G+, G

+].
Noting that

G+ ≤
(
lim sup
x→+∞

g(x)
)∫

ψ>0

ψ +
(
lim inf
x→−∞

g(x)
)∫

ψ<0

ψ ,

and writing a similar inequality for G+, the following corollary is obtained, after
computation of the integrals for ψ.
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Corollary 2. Suppose that

Φ(θ)
2
√
α
>

(
lim sup
x→+∞

g(x)
)
k

α
−
(
lim inf
x→−∞

g(x)
)
k

β
, for all θ ∈ [0, 2π],

or
Φ(θ)
2
√
α
<

(
lim inf
x→+∞

g(x)
)
k

α
−
(
lim sup
x→−∞

g(x)
)
k

β
, for all θ ∈ [0, 2π].

Then equation (1) has at least one 2π-periodic solution. Notice that β has to be
considered as +∞ in the singular case, α being then equal to k2/4.

The conditions appearing in the above corollary are conditions of Landesman-
Lazer type; they are clearly more restrictive than (4).

On the other hand, if g admits limits g(±∞) at ±∞, it is immediate that

G+ = G+ = 2k
√
α

(
g(+∞)
α

− g(−∞)
β

)
, (5)

still with β = +∞ in the singular case, so that the following corollary can be
stated.

Corollary 3. Assume that g admits limits at ±∞. If G+ = G+, given by (5), is
a regular value of Φ and if the number of zeros of Φ−G+ in [0, 2π/k) is different
from 2, equation (1) has at least one 2π-periodic solution.

The situation of the above corollary has been treated by Fabry-Fonda [7] for
equations with jumping nonlinearities. When g admits limits at ±∞, Corollary 3
provides existence conditions that are more general than conditions of Landesman-
Lazer type.

Whether the Fredholm type conditions of Theorem 1 are necessary is probably
false; on the other hand, existence of solutions for whatever p is also false. We
prove in [3] that, for ε sufficiently small, ε �= 0, the equation

x′′ + V ′(x) = ε sin t (6)

has no 2π-periodic solutions, assuming that V satisfies hypothesis (Hk) with k = 1,
and that V ′(x) satisfies either (S) or (NS). We assume moreover that V ′ admits
a derivative at 0.

It does not seem easy to give simple conditions ensuring that a nonlinearity
falls into the scope of the preceding theorems. Given an equation

x′′ + q(x) = p(t),

it is not clear if the existence conditions can be easily stated in terms of q and
p. In the singular case, we are able to prove the following. We denote by Q the
primitive of q which is zero at zero.
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Corollary 4. Assume that p is locally integrable and 2π-periodic, q is locally
lipschitzian, limx→−aQ(x) = +∞ and limx→+∞(q(x) − x/4) = g∞/4. Moreover,
assume that there exists δ > 0 such that for every x ∈ (−a,−a+ δ) :
(i) q′(x) > 0,
(ii) |q′(x)| < Q(x)−3/2|q(x)|3/

√
2.

Then, if the number of zeros of Φ − (g∞ − a) in [0, 2π) is not equal to 2, those
zeros being simple, equation

x′′ + q(x) = p(t)

admits at least one 2π-periodic solution.

Corollary 4 provides an answer to a question raised by Del Pino and al.
(Remark 1.2 in [6]). For the model equation

x′′ − 1
xν

+ βx = p(t),

with ν ≥ 1, Del Pino, Manásevich and Montero proved the existence of at least one
2π-periodic solution for β �= k2/4 and p continuous 2π-periodic. Using a shift in
the x coordinate, Corollary 4 can be applied to this model equation. Moreover we
can show that for this model, g∞ = a. It gives then an explicit existence condition
for 2π-periodic solutions in the resonant cases. On the other hand, as mentioned
above, in the resonant cases a non-existence result is proved in [3]. For example,
the equation

x′′ − 1
x3

+
1
4
x = ε sin t

has no 2π-periodic solution, at least for ε small.

3 Unbounded solutions

For the simpler equation

x′′ + αx+ − βx− = p(t), (7)

with p smooth, it has been shown by Liu in [10] that all the solutions are bounded
if Φ is of constant sign. This is also true for nonlinearities deriving from regular
isochronous potentials, as proved in [4].

By contrast, it follows from results of Fabry and Mawhin [8] that, if the func-
tion Φ has zeros, all being simple, then the large amplitude solutions of (7) are
unbounded either in the past or in the future (see also [5]). On the other hand, we
show in [3] that the equation (6) where V is a smooth potential satisfying hypoth-
esis (Hk) with k = 1, and either (S) or (NS), has no 2π-periodic solution, at least
for ε small. By a result of Massera [11], all the solutions of equation (6) are then
unbounded for ε small. It is easy to check that for the forcing term p(t) = sin t,
the function Φ has exactly two (simple) zeros in [0, 2π).
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All the above results suggest that, for equation (1), the boundedness of the
solutions depends on whether Φ vanishes at some point or not, at least when
G+ = G+ = 0. We show in [2] how to adapt the condition to the general case
of arbitrary values of G+ and G+. We prove the following result, which improves
Theorem 2 of [8].

Theorem 5. Let Φ,G+, G
+ be defined as above. Suppose that maxΦ > G+,

minΦ < G+ and that [G+, G
+] does not contain any critical value of Φ. Then,

there exists R > 0 such that all the solutions x(t) of (1) satisfying (x(0))2 +
(x′(0))2 > R are unbounded, either in the future or in the past.

Notice that Theorem 5 does apply to the particular case G+ = G+, which
holds for a large class of functions g.When G+ = G+, the assumption of Theorem
5 amounts to ask that Φ − G+ vanishes at some point, the zeros being simple.
Hence, if one considers, for instance, the equation

x′′ + αx+ − βx− + sin(x) = p(t) , (8)

where α, β satisfy (2) with k = 1, or the equation

x′′ − 1
4(x+ 1)3

+
(x + 1)

4
+ sin(x) = p(t) ,

for both of which g(x) = sin(x), it results from Theorem 5 that if the function
Φ defined by (3) vanishes at some point in [0, 2π) (the zeros are supposed to be
simple), then the large amplitude solutions of these equations are unbounded either
in the past or in the future. In the particular case where k = 1 and p(t) = a +
b cos t, it is easily computed that unbounded solutions are present when 3|a| < |b|.
Equation (8) is already covered by the results of [8] but, when G+ �= G+, the
result of Theorem 5 is new, even in the case of a harmonic oscillator. We refer to
Proposition 1 of [3] for examples where the limits G+ and G+ are different and
where these can be easily computed from the limits of g.
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