M. Geissert; M. Hieber

L^p-theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle

Persistent URL: http://dml.cz/dmlcz/700394

Terms of use:

© Comenius University, 2007

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz
L^p-THEORY OF THE NAVIER-STOKES FLOW IN THE EXTERIOR OF A MOVING OR ROTATING OBSTACLE

M. GEISSERT AND M. HIEBER

ABSTRACT. In this paper we describe two recent approaches for the L^p-theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle.

1. Introduction

Consider a compact set $O \subset \mathbb{R}^n$, the obstacle, with boundary $\Gamma := \partial O$ of class $C^{1,1}$. Set $\Omega := \mathbb{R}^n \setminus O$. For $t > 0$ and a real $n \times n$-matrix M we set

$$\Omega(t) := \{y(t) = e^{tM}x, x \in \Omega\} \text{ and } \Gamma(t) := \{y(t) = e^{tM}x, x \in \Gamma\}.$$

Then the motion past the moving obstacle O is governed by the equations of Navier-Stokes given by

$$\begin{align*}
\partial_t w - \Delta w + w \cdot \nabla w + \nabla q &= 0, & \text{in } \Omega(t) \times \mathbb{R}_+ , \\
\nabla \cdot w &= 0, & \text{in } \Omega(t) \times \mathbb{R}_+ , \\
w(y,0) &= w_0(y), & \text{in } \Omega .
\end{align*}$$

(1)

Here $w = w(y,t)$ and $q(y,t)$ denote the velocity and the pressure of the fluid, respectively. The boundary condition on $\Gamma(t)$ is the usual no-slip boundary condition. Quite a few articles recently dealt with the equation above, see [2], [3], [4], [5], [6], [8], [10], [11], [15], [16].

In this paper, we describe two approaches to the above equations for the L^p-setting where $1 < p < \infty$. The basic idea for both approaches is to transfer the problem given on a domain $\Omega(t)$ depending on t to a fixed domain. The first transformation described in the following Section 2 yields additional terms in the equations which are of Ornstein-Uhlenbeck type. We shortly describe the techniques used in [15] and [12] in order to construct a local mild solution of (1).

In contrast to the first transformation, the second one, inspired by [17] and [6], allows to invoke maximal L^p-estimates for the classical Stokes operator in exterior domains and like this we obtain a unique strong solution to (1). This approach is described in section 3.

Received December 1, 2005.

2000 Mathematics Subject Classification. Primary 35Q30, 76D03.

Key words and phrases. Navier-Stokes, rotating obstacle, mild and strong solutions.

Supported by the DFG-Graduiertenkolleg 853.
2. Mild solutions

In this section we construct mild solutions to the Navier-Stokes problem (1). To do this we first transform the equations (1) to a fixed domain. Let \(\Omega, \Omega(t) \) and \(\Gamma(t) \) be as in the introduction and suppose that \(M \) is unitary. Then by the change of variables \(x = e^{-tM}y \) and by setting \(v(x, t) = e^{-tM}w(e^{tM}x, t) \) and \(p(x, t) = q(e^{tM}x, t) \) we obtain the following set of equations defined on the fixed domain \(\Omega \):

\[
\begin{aligned}
\partial_t v - \Delta v + v \cdot \nabla v - Mx \cdot \nabla v + Mv + \nabla p &= 0, & \text{in } \Omega \times \mathbb{R}_+,
\nabla \cdot v &= 0, & \text{in } \Omega \times \mathbb{R}_+,

v(x, t) &= Mx, & \text{on } \Gamma \times \mathbb{R}_+,

v(x, 0) &= w_0(x), & \text{in } \Omega.
\end{aligned}
\]

Note that the coefficient of the convection term \(Mx \cdot \nabla u \) is unbounded, which implies that this term cannot be treated as a perturbation of the Stokes operator.

This problem was first considered by Hishida in \(L^p(\Omega) \) for \(\Omega \subset \mathbb{R}^3 \) and \(Mx = \omega \times x \) with \(\omega = (0, 0, 1)^T \) in [15] and [16]. The \(L^p \)-theory was developed by Heck and the authors in [12] even for general \(M \).

We will construct mild solutions for \(w_0 \in L^p(\Omega) \), \(p \geq n \), to the problem (2) with Kato's iteration (see [18]).

The starting point is the linear problem

\[
\begin{aligned}
\partial_t u - \Delta u - Mx \cdot \nabla u + Mu + b \cdot \nabla u + u \cdot \nabla b + \nabla p &= 0, & \text{in } \Omega \times \mathbb{R}_+, \\
\nabla \cdot u &= 0, & \text{in } \Omega \times \mathbb{R}_+, \\
u(x, t) &= 0, & \text{on } \Gamma \times \mathbb{R}_+, \\
u(x, 0) &= w_0(x), & \text{in } \Omega,
\end{aligned}
\]

where \(b \in C_c^\infty(\overline{\Omega}) \). The additional term \(b \cdot \nabla u + u \cdot \nabla b \) simplifies the treatment of the Navier-Stokes problem (see (11) below). We will first show that the solution of (3) is governed by a \(C_0 \)-semigroup on \(L^p_\sigma(\Omega) \). More precisely, let \(L_{\Omega,b} \) be defined by

\[
\begin{aligned}
L_{\Omega,b} u &= P_\Omega L_b u \\
D(L_{\Omega,b}) &= \{ u \in W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega) \cap L^p(\Omega) : Mx \cdot \nabla u \in L^p(\Omega) \},
\end{aligned}
\]

where \(L_b u := \Delta u + Mx \cdot \nabla u - Mu + b \cdot \nabla u + u \cdot \nabla b \). Then the following theorem is proved in [12].

Theorem 2.1. Let \(1 < p < \infty \) and let \(\Omega \subset \mathbb{R}^n \) be an exterior domain with \(C^{1,1} \)-boundary. Assume that \(\text{tr} M = 0 \) and \(b \in C_c^\infty(\overline{\Omega}) \). Then the operator \(L_{\Omega,b} \) generates a \(C_0 \)-semigroup \(T_{\Omega,b} \) on \(L^p_\sigma(\Omega) \).

Sketch of the proof. The proof is divided into several steps. First it is shown that \(L_{\Omega,b} \) is the generator of an \(C_0 \)-semigroup \(T_{\Omega,b} \) on \(L^p_\sigma(\Omega) \). Then a-priori \(L^p \)-estimates for \(T_{\Omega,b} \) are proved. Once we have shown this we can easily define a consistent family of semigroups \(T_{\Omega,b} \) on \(L^p_\sigma(\Omega) \) for \(1 < p < \infty \). In the last step the generator of \(T_{\Omega,b} \) on \(L^p_\sigma(\Omega) \) is identified to be \(L_{\Omega,b} \).
We start by showing that $L_{Ω,b}$ is the generator of a C_0-semigroup on $L^2_b(Ω)$. Choose $R > 0$ such that $supp b ∪ Ω^c ⊂ B_R(0) = \{x ∈ ℜ^n : |x| < R\}$. We then set

$$D = Ω ∩ B_{R+5}(0),$$

$$K_1 = \{x ∈ Ω : R < |x| < R + 3\},$$

$$K_2 = \{x ∈ Ω : R + 2 < |x| < R + 5\}.$$

Denote by B_i for $i \in \{1, 2\}$ Bogovskiǐ’s operator (see [1], [9, Chapter III.3], [13]) associated to the domain K_i and choose cut-off functions $φ, η ∈ C^∞(ℜ^n)$ such that $0 ≤ φ, η ≤ 1$ and

$$φ(x) = \begin{cases} 0, & |x| ≤ R + 1, \\ 1, & |x| ≥ R + 2, \end{cases} \quad \text{and} \quad η(x) = \begin{cases} 1, & |x| ≤ R + 3, \\ 0, & |x| ≥ R + 4. \end{cases}$$

For $f ∈ L^p_b(Ω)$ we denote by f^R the extension of f by 0 to all of $ℜ^n$. Then, since $C^∞_{c,φ}(Ω)$ is dense in $L^p_b(Ω)$, $f^R ∈ L^p_b(ℜ^n)$. Furthermore, we set $f^D = ηf - B_2((∇η)f)$. Since $∫_{K_2}(∇η)f = 0$ it follows from [9, Chapter III.3] that $f^D ∈ L^p_b(D)$.

By the perturbation theorem for analytic semigroups there exists $ω_1 ≥ 0$ such that for $λ > ω_1$ there exist functions $u^D_λ$ and $p^D_λ$ satisfying the equations

$$(λ - L_b)u^D_λ + ∇p^D_λ = f^D, \quad \text{in } D × ℜ_+,$$

$$∇ · u^D_λ = 0, \quad \text{in } D × ℜ_+,$$

$$u^D_λ = 0, \quad \text{on } ∂D × ℜ_+.$$

(4)

Moreover, by [14, Lemma 3.3 and Prop. 3.4], there exists $ω_2 ≥ 0$ such that for $λ > ω_2$ there exists a function $u^R_λ$ satisfying

$$(λ - L_0)u^R_λ = f^R, \quad \text{in } ℜ^n × ℜ_+,$$

$$∇ · u^R_λ = 0, \quad \text{in } ℜ^n × ℜ_+.$$

(5)

For $λ > \max\{ω_1, ω_2\}$ we now define the operator $U_λ : L^p_b(Ω) → L^p_b(Ω)$ by

$$U_λf = φu^R_λ + (1 - φ)u^D_λ + B_1(∇φ(u^R_λ - u^D_λ)),$$

(6)

where $u^R_λ$ and $u^D_λ$ are the functions given above, depending of course on f. By definition, we have

$$U_λf ∈ \{v ∈ W^{2,p}(Ω) ∩ W^{1,p}_0(Ω) ∩ L^p_b(Ω) : Mx · ∇v ∈ L^p_b(Ω)\}.$$

(7)

Setting $P_λf = (1 - φ)p^D_λ$, we verify that $(U_λf, P_λf)$ satisfies

$$∀ x ∈ D \text{ such that } \{x\} ∈ \lambda K_{2i}.$$

(8)

where $T_λ$ is given by

$$T_λf = -2(∇φ)∇(u^R_λ - u^D_λ) - (∆φ + Mx · (∇φ))(u^R_λ - u^D_λ) + (∇φ)p^D_λ + \frac{1}{2}(λ - Δ - Mx · ∇ + M)B_1(∇φ(u^R_λ - u^D_λ)).$$

(9)
It follows from [12, Lemma 4.4] that for $\alpha \in (0, \frac{1}{2p'})$, where $\frac{1}{p} + \frac{1}{p'} = 1$, there exists a strongly continuous function $H : (0, \infty) \to \mathcal{L}(L^p_\sigma(\Omega))$ satisfying
\[
\|H(t)\|_{\mathcal{L}(L^p_\sigma(\Omega))} \leq C t^{\alpha-1} e^{\omega t}, \quad t > 0
\]
for some $\omega \geq 0$ and $C > 0$ such that $\lambda \mapsto P_\lambda T_\lambda$ is the Laplace Transform of H.
We thus easily calculate
\[
\|P_\lambda T_\lambda\|_{\mathcal{L}(L^p_\sigma(\Omega))} \leq C\lambda^{-\alpha}, \quad \lambda > \omega.
\]
Therefore, $R_\lambda := U_\lambda \sum_{j=0}^{\infty} (P_\lambda T_\lambda)^j$ exists for λ large enough and $(\lambda - L_0)R_\lambda f = f$ for $f \in L^2_\sigma(\Omega)$. Since $L_{\Omega,b}$ is dissipative in $L^2_\sigma(\Omega)$, $L_{\Omega,b}$ generates a C_0-semigroup $T_{\Omega,b}$ on $L^2_\sigma(\Omega)$. Moreover, we have the representation
\[
T_{\Omega,b}(t)f = \sum_{n=0}^{\infty} T_n(t)f, \quad f \in L^2_\sigma(\Omega),
\]
where $T_n(t) := \int_0^t T_{n-1}(t-s) H(s) \, ds$ for $n \in \mathbb{N}$ and
\[
T_0(t) = \varphi T_R(t) f^R + (1-\varphi) T_{D,b}(t) f^D + B_1((\nabla \varphi)(T_R(t)f^R - T_{D,b}(t)f^D)), \quad t \geq 0.
\]
Here T_R denotes the semigroup on $L^p_\sigma(\mathbb{R}^n)$ generated by $L_{b} - 0$ and $T_{D,b}$ denotes the semigroup on $L^p_\sigma(D)$ generated by $L_{\Omega,b}$. Note that $\lambda \mapsto U_\lambda$ is the Laplace Transform of T_λ. Since the right hand side of the representation (9) is well defined and exponentially bounded in $L^p_\sigma(\Omega)$ by [12, Lemma 4.6], we can define a family of consistent semigroups $T_{\Omega,b}$ on $L^p(\Omega)$ for $1 < p < \infty$. Finally, the generator of $T_{\Omega,b}$ on $L^p(\Omega)$ is $L_{\Omega,b}$ which can be proved by using duality arguments (cf. [12, Theorem 4.1]).

Remark 2.2. (a) The semigroup $T_{\Omega,b}$ is not expected to be analytic since, by [16, Proposition 3.7], the semigroups $T_{\b|$ $\Omega|}$ in \mathbb{R}^3 is not analytic.
(b) As the cut-off function φ is used for the localization argument similarly to [15] the purpose of η is to ensure that $f_D \in L^p_\sigma(\Omega)$. This is essential to establish a decay property in λ for the pressure P_λ^D (cf. [12, Lemma 3.5]) and T_λ.
(c) The crucial point for a-priori L^p-estimates for $T_{\Omega,b}$ on $L^p_\sigma(\Omega)$ is the existence of H satisfying (8).

Since L^p-L^q smoothing estimates for T_R and $T_{D,b}$ follow from [14, Lemma 3.3 and Prop. 3.4] and [12, Prop. 3.2], the representation of the semigroup $T_{\Omega,b}$ given by (9) and estimates for sums of convolutions of this type (cf. [12, Lemma 4.6]) yield the following proposition.

Proposition 2.3. Let $1 < p < q < \infty$ and let $\Omega \subset \mathbb{R}^n$ be an exterior domain with $C^{1,1}$-boundary. Assume that $\text{tr} M = 0$ and $b \in C^\infty_c(\Omega)$. Then there exist constants $C > 0, \omega \geq 0$ such that for $f \in L^p_\sigma(\Omega)$
\begin{itemize}
 \item[(a)] $\|T_{\Omega,b}(t)f\|_{L^q_\sigma(\Omega)} \leq C t^{-\frac{q}{p}} \left(\frac{1}{p} - \frac{1}{q}\right) e^{\omega t} \|f\|_{L^p_\sigma(\Omega)}$, \quad $t > 0$,
 \item[(b)] $\|
abla T_{\Omega,b}(t)f\|_{L^p(\Omega)} \leq C t^{-\frac{q}{p}} e^{\omega t} \|f\|_{L^p_\sigma(\Omega)}$, \quad $t > 0$.
\end{itemize}
Moreover, for $f \in L^p_\sigma(\Omega)$
\begin{itemize}
 \item[(a)] $\|t^{-\frac{q}{p}} \left(\frac{1}{p} - \frac{1}{q}\right) T_{\Omega,b}(t)f\|_{L^p_\sigma(\Omega)} \to 0$, \quad \text{as} \quad t \to 0$,
In order to construct a mild solution to (2) choose \(\zeta \in C^\infty_c(\mathbb{R}^n) \) with \(0 \leq \zeta \leq 1 \) and \(\zeta = 1 \) near \(\Gamma \). Further let \(K \subset \mathbb{R}^n \) be a domain such that \(\text{supp} \nabla \zeta \subset K \). We then define \(b : \mathbb{R}^n \to \mathbb{R}^n \) by
\[
(10) \quad b(x) := \zeta Mx - B_K((\nabla \zeta)Mx),
\]
where \(B_K \) is Bogovskiǐ's operator associated to the domain \(K \). Then \(\text{div} \ b = 0 \) and \(b(x) = Mx \) on \(\Gamma \). Setting \(u := v - b \), it follows that \(u \) satisfies
\[
\partial_t u - L \bxu + \nabla p = F, \quad u(0) = u_0 - b, \quad \text{on } \Omega \times (0, T),
\]
with \(\nabla \cdot (u_0 - b) = 0 \) in \(\Omega \) and \(F = -\Delta b - Mx \cdot \nabla b + Mb + b \cdot \nabla b \), provided \(u \) satisfies (2). Applying the Helmholtz projection \(P_\Omega \) to (11), we may rewrite (11) as an evolution equation in \(L^p_\sigma(\Omega) \):
\[
(12) \quad u' - L_{\Omega,b}u + P_\Omega(u \cdot \nabla u) = P_\Omega F, \quad u(0) = u_0 - b.
\]

Then the main result of [12] is the following theorem.

Theorem 2.4. Let \(n \geq 2, n \leq p \leq q < \infty \) and let \(\Omega \subset \mathbb{R}^n \) be an exterior domain with \(C^{1,1} \)-boundary. Assume that \(\text{tr} \ M = 0 \) and \(b \in C^\infty_c(\bar{\Omega}) \) and \(u_0 - b \in L^p_\sigma(\Omega) \). Then there exist \(T_0 > 0 \) and a unique mild solution \(u \) of (12) such that
\[
t \mapsto t^{\frac{n}{p} \left(\frac{1}{p} - \frac{1}{q} \right)} u(t) \in C \left([0, T_0]; L^p_\sigma(\Omega) \right),
\]
and
\[
t \mapsto t^{\frac{n}{p} \left(\frac{1}{p} - \frac{1}{q} \right) + \frac{1}{2}} \nabla u(t) \in C \left([0, T_0]; L^q(\Omega) \right).
\]

3. Strong solutions

In this section we construct strong solutions to problem (1) for \(\Omega \subset \mathbb{R}^n, n \geq 2 \) and \(\text{tr} \ M = 0 \). The main difference to the method presented in the previous section is another change of variables. Indeed, we construct a change of variables which coincides with a simple rotation in a neighborhood of the rotating body but it equals to the identity operator far away from the rotating body. More precisely,
let $X(\cdot, t) : \mathbb{R}^n \to \mathbb{R}^n$ denote the time dependent vector field satisfying
\[
\frac{\partial X}{\partial t}(y, t) = -b(X(y, t)), \quad y \in \mathbb{R}^n, \quad t > 0,
\]
\[
X(y, 0) = y, \quad y \in \mathbb{R}^n,
\]
where b is as in (10). Similarly to [6, Lemma 3.2], the vector field $X(\cdot, t)$ is a C^∞-diffeomorphism form Ω onto $\Omega(t)$ and $X \in C^\infty([0, \infty) \times \mathbb{R}^n)$. Let us denote the inverse of $X(\cdot, t)$ by $Y(\cdot, t)$. Then, $Y \in C^\infty([0, \infty) \times \mathbb{R}^n)$. Moreover, it can be shown that for any $T > 0$ and $|a| + k > 0$ there exists $C_{k,a,T} > 0$ such that
\[
(13) \quad \sup_{y \in \mathbb{R}^n, 0 \leq t \leq T} \left| \frac{\partial^k \partial^\alpha}{\partial t^k \partial y^\alpha} X(y, t) \right| + \sup_{x \in \mathbb{R}^n, 0 \leq t \leq T} \left| \frac{\partial^k \partial^\alpha}{\partial t^k \partial x^\alpha} Y(x, t) \right| \leq C_{k,a,T}.
\]
Setting
\[
v(x, t) = J_X(Y(x, t), t)w(Y(x, t), t), \quad x \in \Omega, \quad t \geq 0,
\]
where J_X denotes the Jacobian of $X(\cdot, t)$ and
\[
p(x, t) = q(Y(x, t), t), \quad x \in \Omega, \quad t \geq 0,
\]
similarly to [6, Prop. 3.5] and [17], we obtain the following set of equations which are equivalent to (1).
\[
\partial_t v - \mathcal{L}v + \mathcal{M}v + \mathcal{N}v + \mathcal{G}p = 0, \quad \text{in } \Omega \times \mathbb{R}_+,
\]
\[
v(x, t) = Mx, \quad \text{on } \Gamma \times \mathbb{R}_+, \\
v(x, 0) = w_0(x), \quad \text{in } \Omega.
\]
Here
\[
(\mathcal{L}v)_i = \sum_{j,k=1}^{n} \frac{\partial}{\partial x_j} \left(g^{jk} \frac{\partial v_i}{\partial x_k} \right) + 2 \sum_{j,k,l=1}^{n} g^{kl} \Gamma_{jk}^{l} \frac{\partial v_i}{\partial x_l},
\]
\[
\quad + \sum_{j,k,l=1}^{n} \left(\frac{\partial}{\partial x_k} (g^{kl} \Gamma_{ji}^{k}) + \sum_{m=1}^{n} g^{kl} \Gamma_{jm}^{k} \Gamma_{km}^{i} \right) v_j,
\]
\[
(\mathcal{N}v)_i = \sum_{j=1}^{n} v_j \frac{\partial v_i}{\partial x_j} + \sum_{j,k=1}^{n} \Gamma_{jk}^{i} v_j v_k,
\]
\[
(\mathcal{M}v)_i = \sum_{j=1}^{n} \frac{\partial X_j}{\partial t} \frac{\partial v_i}{\partial x_j} + \sum_{j,k=1}^{n} \left(\Gamma_{jk}^{i} \frac{\partial X_k}{\partial t} + \frac{\partial X_i}{\partial x_k} \frac{\partial^2 Y_k}{\partial x_j \partial t} \right) v_j,
\]
\[
(\mathcal{G}p)_i = \sum_{j=1}^{n} g^{ij} \frac{\partial p}{\partial x_j}
\]
with
\[
g^{ij} = \sum_{k=1}^{n} \frac{\partial X_i}{\partial y_k} \frac{\partial X_j}{\partial y_k}, \quad g_{ij} = \sum_{k=1}^{n} \frac{\partial Y_k}{\partial x_i} \frac{\partial Y_j}{\partial x_k}
\]
and
\[
\Gamma_{ij}^{k} = \frac{1}{2} \sum_{l=1}^{n} g^{kl} \left(\frac{\partial g_{il}}{\partial x_j} + \frac{\partial g_{jl}}{\partial x_i} + \frac{\partial g_{ij}}{\partial x_l} \right).
\]
The obvious advantage of this approach is that we do not have to deal with an unbounded drift term since all coefficients appearing in $\mathcal{L}, \mathcal{N}, \mathcal{M}$ and \mathcal{G} are smooth and bounded on finite time intervals by (13). However, we have to consider a non-autonomous problem. Setting $u = v - b$, we obtain the following problem with homogeneous boundary conditions which is equivalent to (14).

$$\begin{align*}
\partial_t u - \mathcal{L}u + \mathcal{M}u + \mathcal{N}u + \mathcal{B}u + \mathcal{G}p &= F_b, & \text{in } \Omega \times \mathbb{R}_+, \\
\nabla \cdot u &= 0, & \text{in } \Omega \times \mathbb{R}_+, \\
\nabla u &= 0, & \text{on } \Gamma \times \mathbb{R}_+, \\
u(x,0) &= w_0(x) - b(x), & \text{in } \Omega.
\end{align*}$$

(15)

Here,

$$\begin{align*}
(Bu)_i &= \sum_{j=1}^n \left(u_j \frac{\partial b_j}{\partial x_j} + b_j \frac{\partial u_i}{\partial x_j} \right) + 2 \sum_{j,k=1}^n \Gamma_{j,k} u_j b_k, & F_b = \mathcal{L}b - \mathcal{M}b - \mathcal{N}b.
\end{align*}$$

Since g^{ij} is smooth and $g^{ij}(\cdot, 0) = \delta_{ij}$ by definition, it follows from (13) that

$$\|g^{ij}(\cdot, t) - \delta_{ij}\|_{L^\infty(\Omega)} \to 0, \quad t \to 0.
$$

(16)

In other words, \mathcal{L} is a small perturbation of Δ and \mathcal{G} is a small perturbation of ∇ for small times t. This motivates to write (15) in the following form.

$$\begin{align*}
\partial_t u - \Delta u + \nabla p &= F(u, p), & \text{in } \Omega \times \mathbb{R}_+, \\
\nabla \cdot u &= 0, & \text{in } \Omega \times \mathbb{R}_+, \\
u &= 0, & \text{on } \Gamma \times \mathbb{R}_+, \\
u(x,0) &= w_0(x) - b(x), & \text{in } \Omega.
\end{align*}$$

(17)

where $F(u, p) := (\mathcal{L} - \Delta)u - \mathcal{M}u - \mathcal{N}u + (\nabla - \mathcal{G})p - \mathcal{B}u + \mathcal{G}b$. We will use maximal L^p-regularity of the Stokes operator and a fixed point theorem to show the existence of a unique strong solution (u, p) of (15). More precisely, let

$$X_T^{p,q} := W^{1,p}(0, T; L^q(\Omega)) \cap L^p(0, T; D(A_q)) \times L^p(0, T; \tilde{W}^{1,p}(\Omega)),$$

where $D(A_q) := W^{2,q}(\Omega) \cap W^{1,q}_d(\Omega) \cap L^q(\Omega)$ is the domain of the Stokes operator. Then, by maximal L^p-regularity of the Stokes operator, Hölder’s inequality and Sobolev’s embedding theorems $\Phi : X_T^{p,q} \to X_T^{p,q}, \Phi((\hat{u}, \hat{p})) := (u, p)$ where (u, p) is the unique solution of

$$\begin{align*}
\partial_t u - \Delta u + \nabla p &= F(\hat{u}, \hat{p}), & \text{in } \Omega \times (0, T) \\
\nabla \cdot u &= 0, & \text{in } \Omega \times (0, T) \\
u &= 0, & \text{on } \Gamma \times (0, T), \\
u(x,0) &= w_0(x) - b(x), & \text{in } \Omega,
\end{align*}$$

is well-defined for $1 < p, q < \infty$ with $\frac{2}{q} + \frac{1}{p} < \frac{3}{2}$ and $T > 0$. Here, the restriction on p and q comes from the nonlinear term \mathcal{N}.

Finally, let $X_T^{p,q}_\delta := \{(u, p) \in X_T^{p,q} : \|\|(u, p) - (\hat{u}, \hat{p})\|_{X_T^{p,q}} \leq \delta, u(0) = w_0 - b\}$ with $(\hat{u}, \hat{p}) = \Phi(\Phi(0, 0))$. Then by (16), Hölder’s inequality and Sobolev’s embedding theorems, it can be shown that for small enough $\delta > 0$ and $T > 0$, $\Psi|_{X_T^{p,q}_\delta}$ is a contraction.

We summarize our considerations in the next theorem which is proved in [7]. Note that the cases $n = 2, 3$ and $p = q = 2$ were already proved in [6].
Theorem 3.1. Let $1 < p, q < \infty$ such that $\frac{n}{2q} + \frac{1}{p} < \frac{3}{2}$ and let $\Omega \subset \mathbb{R}^n$ be an exterior domain with $C^{1,1}$-boundary. Assume that $\text{tr} M = 0$ and that $w_0 - b \in (L^q_2(\Omega), D(A_q))_{\frac{1}{1-p}, p}$. Then there exist $T > 0$ and a unique solution $(u, p) \in X_{p,q}^T$ of problem (15).

References