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NUMERICAL APPROXIMATION OF SINGULAR BOUNDARY VALUE
PROBLEMS FOR A NONLINEAR DIFFERENTIAL EQUATION

PEDRO LIMA∗ AND LUISA MORGADO †

Abstract. In this work we are concerned about singular boundary value problems for certain
nonlinear second order ordinary differential equations on finite and infinite domains. An asymptotic
expansion is obtained for the family of solutions satisfying the boundary condition at the origin. In the
case of infinite domains, the asymptotic behavior of the solutions is also analysed for large values of the
independent variable. Based on the asymptotic expansions, computational methods are introduced to
approximate the solution of the problem.

Key words. nonlinear singular boundary value problem, bubble-type solution, asymptotic approx-
imation, one-parameter family of solutions, shooting method
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1. Introduction. In this work, we are concerned about the nonlinear second order
differential equation

y′′ (x) + N−1
x y′ (x) = c(x)f(y), (1.1)

where c(x) is a continuous function in [0,+∞[, there exist real numbers Cmax and Cmin

such that 0 < Cmin ≤ c(x) ≤ Cmax, ∀x ∈ [0,+∞[ and L = limx→+∞ c(x) 6= 0, f is a
polynomial, such that f(0) = 0. We search for solutions of this equation which satisfy the
boundary conditions:

y′ (0) = 0, y(M) = 0, M ∈ R+, (1.2)

or

y′ (0) = 0, lim
x→+∞

y(x) = 0. (1.3)

These two boundary value problems have been studied in [3]. They arise when looking
for radial solutions of the elliptic equation 4y = c(|x|)f(y) in a ball B(0,M) ⊂ RN or in
all RN , respectively (N > 1). The case when c(x) ≡ 1 has also been studied in [2] and
[1]. A more general class of problems has been analysed in [7], where the linear operator
on the left-hand side of Eq. (1.1) has been replaced by

(|y′|m−2y′)′ +
N − 1

x
|y′|m−2y′,

which represents the radial part of the so-called degenerate laplacian (it coincides with
the usual laplacian in the case m = 2). An equation with an even more general operator
was analysed in [6]. In all these papers, sufficient conditions where imposed on f that
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202 P. Lima and L. Morgado

guarantee the existence of at least one positive solution to the considered problems. A
theorem about uniqueness of solution was also presented in [6].

A related problem arises in hydrodynamics when modeling the formation of micro-
scopical bubbles in a non-homogeneous fluid. In this case the density of the fluid ρ satisfies
the so-called density profile equation (see [4]). This equation was studied in [10] and [11],
where it was written in the form:

ρ′′(r) +
N − 1

r
ρ′(r) = 4λ2(ρ + 1)ρ(ρ− ξ), 0 < r < ∞, (1.4)

where λ > 0, N > 1. The authors investigated strictly increasing solutions of Eq. (1.4)
which satisfy the boundary conditions

lim
r→0+

ρ′(r) = 0, (1.5)

lim
r→∞

ρ(r) = ξ. (1.6)

As we shall see, this problem can be reduced to a particular case of (1.1). The theoretical
results of [7] can then be used to show that problem (1.4), (1.5), (1.6), with 0 < ξ < 1,
has at least one strictly monotone solution. With this purpose, let us set in (1.4)

ρ(r) = ξ − y(r).

Then the boundary conditions (1.5), (1.6) reduce to (1.3) and equation (1.4) reduces to
(1.1), where

f(y) = 4λ2y(y − ξ)(y − ξ − 1) (1.7)

and c(x) ≡ 1. Moreover, it is easy to verify that, if 0 < ξ < 1, the function f given by
(1.7) satisfies the conditions of [7, Theorem 1].

On the other hand, it was shown in [11] that a solution of (1.4) with the considered
properties exists only if 0 < ξ < 1.

If in the considered problem we replace the boundary condition (1.6) by

ρ(M) = ξ (1.8)

where M > 0, and N < 4, then, using again the substitution ρ(r) = ξ − y(r), we obtain
a problem of the type (1.1), (1.2). According to [3, Theorem 19 and Remark 5], if M is
sufficiently large, this problem has at least one solution. Moreover, the mentioned theorem
is still applicable if the right-hand side of equation (1.4) is multiplied by a function c(r),
such that 0 < Cmin ≤ c(r) ≤ Cmax, ∀r ∈ [0,+∞[.

In Section 2, we consider the mentioned above case of f(y) = 4λ2y(y−ξ)(y−ξ−1) and
extend the results obtained in [10] and [11] for nonconstant functions c(r). In particular,
we shall obtain, for this case, series expansions of the solutions of the considered boundary
value problem near the singularities at zero and infinity.

In section 3, we consider f(y) = y−y3. For this case, we also obtain series expansions
of the solutions of (1.1) at zero and at infinity.

Numerical results for all the considered boundary value problems are presented in
Section 4.

We finish this paper with some conclusions and remarks on future work.
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2. The case f(y) = 4λ2y(y−ξ)(y−ξ−1). As we have seen in the introduction, when
the function on the right-hand side of our equation has this form, with 0 < ξ < 1, and
c(x) ≡ 1, the boundary value problem (1.1), (1.3) is equivalent to the problem, considered
in [10] and [11]. In order to compare our results with those obtained in the cited works,
we perform the variable substitution y = ξ − ρ. Then (1.1) can be rewritten as

ρ′′(x) +
N − 1

x
ρ′(x) = 4λ2(ρ + 1)ρ(ρ− ξ)c(x), 0 < x < ∞, (2.1)

and the boundary conditions (1.2) and (1.3) become, respectively

ρ′(0) = 0, (2.2)
ρ(M) = ξ (2.3)

and

ρ′(0) = 0, (2.4)
lim

x→∞
ρ(x) = ξ. (2.5)

2.1. The singularity at zero. Let us consider equation (2.1) with initial conditions

lim
x→0+

ρ(x) = ρ0, lim
x→0+

xρ′(x) = 0, (2.6)

where ρ0 is a real parameter. Note that this problem is singular at zero for all N > 1.
We shall assume that c(x) is analytic in a neighborhood of 0 and can be expanded in

the form

c(x) = γ0 +
∞∑

k=1

γkxk, x ≤ δ. (2.7)

If we linearize equation (2.1) in the neighborhood of x = 0, taking (2.6) into account,
we obtain an equation with a regular singularity at zero, with characteristic exponents
λ1 = 0 and λ2 = 2−N .

Therefore, according to [9, Theorem 4 and Theorem 5], the Cauchy problem (2.1),
(2.6) for each value of ρ0 has a unique solution that can be represented in the form of the
series

ρ(x) = ρ0 +
+∞∑
k=2

ρk(ρ0)xk, 0 ≤ x ≤ δ, δ > 0. (2.8)

The coefficients ρk can be determined substituting (2.8) in (2.1). For k = 2, 3, 4 we obtain
the following formulae:

ρ2(ρ0) =
2λ2

N
ρ0(ρ0 + 1)(ρ0 − ξ)γ0,

ρ3(ρ0) =
4λ2

3N + 3
ρ0(ρ0 + 1)(ρ0 − ξ)γ1,

ρ4(ρ0) =
λ2(−γ2ξρ0 + γ2ρ

2
0 − γ2ξρ

2
0 + γ2ρ

3
0 − γ0ξρ2 + 2γ0ρ0ρ2 − 2γ0ξρ0ρ2 + 3γ0ρ

2
0ρ2)

N + 2
,

(2.9)
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where, for the sake of simplicity, we have replaced ρ2(ρ0) by ρ2. Hence, we conclude
that each solution of the form (2.8) satisfies the condition (2.4) and therefore the singular
Cauchy problem (2.1), (2.4) has a one parameter family of solutions.

Example 2.1.1. Considering, for example, c(x) = cos
(

1
2+x2

)
, we have c(x) = cos( 1

2 ) +
1
4 sin( 1

2 )x2 + O(x4), as x → 0, and therefore γ0 = cos( 1
2 ) and γ2 = 1

4 sin( 1
2 ). Substituting

these values in the right-hand side of formulae (2.9), we obtain the corresponding values
of ρk(ρ0), k = 2, 3, . . ..

2.2. The singularity at infinity. Let us now consider equation (2.1) with initial
condition

lim
x→+∞

(ρ(x)− ξ) = lim
x→+∞

ρ′(x) = 0. (2.10)

In order to analyze the asymptotic behavior of the solutions of (2.1) at infinity,
where this equation has an irregular singular point, we perform the variable substitution
z = x

N−1
2 (ρ− ξ). Then (2.1) becomes

z′′ = 4λ2

(
z

x
N−1

2

+ ξ + 1
) (

z

x
N−1

2

+ ξ

)
zc(x) +

(N − 1)(N − 3)
4x2

z, (2.11)

and (2.10) take the form

lim
x→+∞

z(x) = lim
x→+∞

z′(x) = 0. (2.12)

If N = 1, equation (2.11) is an autonomous equation. When N > 1, this equation is
asymptotically autonomous, this is, when x → +∞, we obtain an autonomous equation
whose characteristic roots are

τ1,2 = ±τ, τ = 2λ
√

ξ(ξ + 1)L, L = lim
x→+∞

c(x) > 0.

Following, as in [10] and [11], a method introduced by Lyapunov [12], the singu-
lar Cauchy problem (2.11),(2.12) has a one parameter family of solutions that can be
represented by

z(x, b) = C1(x)b e−τx +
+∞∑
k=2

Ck(x)bk e−τkx, x ≥ x∞, (2.13)

where b is the parameter and |b e−τx∞ | is small. The coefficients Ck(x) can be obtained
substituting (2.13) in (2.11). For k = 1, we obtain the linear differential equation

C ′′1 (x)− 2τC ′1(x) =
(

(N − 1)(N − 3)
4x2

+ (c(x)− L)
)

C1(x), (2.14)

and the initial conditions

lim
x→+∞

C1(x) = 1, lim
x→+∞

C ′1(x) = 0. (2.15)

If
∫∞

x∞
(c(x) − L) dx < ∞, according to [9, Theorem 3 and Note 3], problem (2.14),

(2.15) has an unique solution, whose smoothness depends on the smoothness of c(x). In
particular, if c(x) allows an expansion in the form

c(x) = L +
∞∑

k=2

dk

xk
, x > x∞, (2.16)
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the solution of the Cauchy problem (2.14), (2.15) may be expanded as

C1(x) = 1 +
+∞∑
k=1

bk

xk
, x > x∞, (2.17)

where the coefficients bk may be determined substituting (2.17) and (2.16) in (2.14). After
determining b1 and b2, we obtain the following expansion for C1:

C1(x) =1 +
(N − 1)(N − 3) + 16d2λ

2ξ(ξ + 1)
8τx

+
((N − 1)(N − 3) + 16d2λ

2ξ(ξ + 1))((N − 5)(N + 1)
128τ2x2

+
16d2λ

2ξ(ξ + 1)) + 256d3λξ(1 + ξ)
√

ξ(1 + ξ)
128τ2x2

+ O

(
1
x3

)
,

(2.18)

as x → +∞.

Example 2.2.1. Considering, for example, c(x) = cos
(

1
2+x2

)
, we have L = limx→∞ c(x) =

1 and it is easy to verify that
∫∞

x∞
(c(x)− 1) dx < ∞.

Moreover, in this case we have

c(x) = 1− 1
2

(
1
x4

)
+ O

(
1
x6

)
, x →∞,

and therefore d2 = 0, d3 = 0 and d4 = − 1
2 . By replacing these coefficients in (2.18), we

obtain the first terms of the expansion of C1.

Concerning the higher terms of the expansion (2.13), we note that the coefficients
Ck, k = 2, 3, . . . may be obtained in a similar way, by solving singular Cauchy problems,
analogous to (2.14), (2.15). Finally, we can conclude that for each value of b the singular
Cauchy problem (2.11), (2.12) has exactly one solution, which can be expanded in the
form (2.13).

Returning now to the initial variable ρ, we conclude that the Cauchy problem (2.1),
(2.10) has a one parameter family of solutions that can be represented by

ρ(x, b) = ξ +
1

x
N−1

2

+∞∑
k=1

Ck(x)bk e−τkx, x ≥ x∞,

where b is the parameter. Note that, since the needed solution is increasing, we must
have b < 0.

3. The case f(y) = y − y3. Let us now consider the singular boundary value prob-
lems (1.1)–(1.2) and (1.1)–(1.3) with f(y) = y − y3 and N > 2. It can be easily proved
that, in this case, the conditions of [3, Theorem 19 and Theorem 20] are satisfied if N < 4,
and therefore these problems have at least one positive solution (in the case of the first
one, for a sufficient large M).

3.1. The singularity at zero. Let us consider equation (1.1) with initial conditions

lim
x→0+

y(x) = y0, lim
x→0+

xy′(x) = 0, (3.1)

where y0 is a real parameter.
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As in subsection 2.1, we assume that c allows an expansion in the form (2.7). In this
case, equation (1.1) also has a regular singularity at x = 0 and its characteristic exponents
are the same as in subsection 2.1. Then, using again [9, Theorem 4 and Theorem 5], we
can assure that the singular Cauchy problem (1.1), (3.1) has exactly one solution for each
value of y0, which can be represented in the form

y(x) = y0 +
+∞∑
k=2

yk(y0)xk, 0 ≤ x ≤ δ, δ > 0. (3.2)

The coefficients yk can be determined substituting (3.2) in (1.1). For k = 2, 3, 4 we obtain:

y2(y0) =
−y0(y0 + 1)(y0 − 1)γ0

2N
,

y3(y0) =
−y0(y0 + 1)(y0 − 1)γ1

3N + 3
,

y4(y0) =
γ2y0 − γ2y

3
0 + γ0y2 − 3γ0y

2
0y2

4(2 + N)
.

All the solutions of the form (3.2) satisfy y′(0) = 0 and therefore the equation (1.1) has
a one-parameter family of solutions that satisfy this condition.

Note that in this case the positive root of F (t) =
∫ t

0
(s− s3) ds is β =

√
2; therefore,

according to [3] and [7], we must have y(0) >
√

2.

3.2. The singularity at infinity. Let us now consider equation (1.1) with the
initial condition

lim
x→+∞

y(x) = lim
x→+∞

y′(x) = 0. (3.3)

In order to analyze the asymptotic behavior of the solutions of (1.1) at infinity,
we follow the same steps as in subsection 2.2. By means of the variable substitution
z = x

N−1
2 y, we obtain the new equation

z′′ =
(

z

x
N−1

2

+ 1
) (

1− z

x
N−1

2

)
zc(x) +

(N − 1)(N − 3)
4x2

z, (3.4)

and the conditions (3.3) become

lim
x→+∞

z(x) = lim
x→+∞

z′(x) = 0. (3.5)

Equation (3.4) is asymptotically autonomous, since, when x → +∞, we obtain the
autonomous equation z′′ = Lz, where L = limx→+∞ c(x) > 0, whose characteristic roots
are

τ1,2 = ±τ, τ =
√

L.

Using again the results of [12], the singular Cauchy problem (3.4), (3.5) has a one
parameter family of solutions that can be represented in the form

z(x, b) = C1(x)b e−τx +
+∞∑
k=2

Ck(x)bk e−τkx, x ≥ x∞, (3.6)

where b is the parameter and |b e−τx∞ | is small.
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The coefficients Ck(x) can be obtain substituting (3.6) in (3.4). In particular, for the
coefficient C1(x), we obtain the singular Cauchy problem (2.14), (2.15). Therefore, using
the same arguments as in subsection 2.2, we conclude that C1 satisfies a series expansion
of the form (2.17).

The coefficients Ck, for k = 2, 3, . . . can be computed in a similar way. By substituting
these coefficients in the series (3.6) we obtain, for each b, a solution of the Cauchy problem
(3.4), (3.5).

Returning to the initial variable y, we conclude that the Cauchy problem (1.1),(3.3)
has a one parameter family of solutions that can be represented by

y(x, b) =
1

x
N−1

2

+∞∑
k=1

Ck(x)bk e−τkx, x ≥ x∞,

where b is the parameter. Since in this case the needed solution of (1.1) is decreasing, we
must have b > 0.

4. Numerical Results.

4.1. The case f(y) = 4λ2y(y − ξ)(y − ξ − 1). Numerical results for the problem
(2.1), (2.4), (2.5)(on the half-line), in the case N = 3, have been obtained in [10] and
[11], using a shooting method, similar to the one of the present paper. More recently, in
[8], collocation methods have been used with success to approximate the solution of the
same problem. Here we will begin by presenting some results, concerning the problem
(2.1), (2.2), (2.3) (on a finite domain). In order to solve numerically this problem, for a
certain M > 0, we use the following method:

• solve equation (2.1) with initial condition ρ(δ, λ) = ρ0 +
∑n1

k=2 ρk(ρ0)δk, where
n1 is a sufficiently large integer so that the remainder of the series is negligible
(for the considered value of δ).

• shoot on the parameter ρ0 so as to satisfy the other boundary condition ρ(M) = ξ.
Using this method, we have determined numerically the value M0, such that, if M > M0,
then the problem (2.1), (2.2), (2.3) has at least one solution. The approximate values of
M0 in the case N = 3, λ = 1 and c(x) = 1 are given in Table. 4.1, for different values of
ξ, with the corresponding values of ρ0. For comparison, we give also the corresponding
values of R and ρ0(inf) (the bubble radius R is, by definition, a positive real number that
satisfies ρ(R) = 0, and ρ0 (inf) denotes ρ0 for the solution in the infinite domain).

ξ M0 ρ0 ρ0(inf) R
0.1 3.45 −0.786731 −0.305 3.32
0.2 3.61 −0.831891 −0.568 2.68
0.3 3.83 −0.893815 −0.771 2.58
0.4 4.14 −0.966880 −0.903 2.72
0.5 4.61 −0.982158 −0.9711 3.07

Table 4.1
N = 3, c(x) = 1

For example, in the case N = 3, λ = 1, c(x) = 1 and ξ = 0.1, we can say that if
M < 3.45, the problem (2.1), (2.2), (2.3) has no solution; if M = 3.45 this problem has
one solution corresponding to ρ0 = −0.786731; and if M = 3.47 (for example) we will
have two solutions corresponding to ρ0 = −0.84779 and ρ0 = −0.742767, as it is shown
in Figure 4.1.



208 P. Lima and L. Morgado

M = 3.45 M = 3.47

Fig. 4.1. λ = 1, c(x) = 1 and ξ = 0.1

Figure 4.2 shows the graphics of some solutions and corresponding derivatives of
the problem (2.1), (2.2), (2.3) in the case c(x) = sin

(
1 + 1

1+x2

)
.

Fig. 4.2. Graphics of solutions and their derivatives in the case N = 3, M = 6 and

c(x) = sin
(
1 + 1

1+x2

)
The boundary value problem (2.1), (2.4), (2.5) (on the half-line) was considered only

for c(x) = const. When analysing this problem, we must take into the consideration that it
is singular both at zero and at infinity. Therefore, instead of shooting from one endpoint,
we must divide the original problem into two auxiliary problems: the first, on the interval
[δ, x0], and the second, on [x0, x∞]. Here, x0 is such that y(x0) = 0. Since each of these
problems has exactly one singularity, it can be solved by the shooting method in the
usual way. Then we must ”couple” the solutions of the two auxiliary problems in order
to obtain the solution of the original problem. Let us describe this algorithm in detail:

• fix certain values of x0, δ and x∞ such that x∞ > x0 > δ;
• solve the Cauchy problem with initial condition ρ(δ, λ) = ρ0 +

∑n1
k=2 ρk(ρ0)δk

with an arbitrary λ;
• shoot on the parameter ρ0 so as to be satisfied ρ(x0, λ) = 0 and denote by ρ−(x, λ)

the obtained solution in [δ, x0];
• solve the Cauchy problem with initial condition

ρ(x∞, λ) = ξ + 1

x
N−1

2
∞

∑n2
k=1 Ck(x∞)bke−2λ

√
ξ(ξ+1)Lkx∞ with the same value of

λ; here n2 is a sufficiently large integer, so that the remainder of the series is
negligible, for the given r∞;
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• shoot on the parameter b so as to satisfy ρ(x0, λ) = 0 and denote by ρ+(x, λ) the
obtained solution in [x0, x∞];

• compute 4(ρ0, λ) = limx→x−0
ρ′(x, λ)− limx→x+

0
ρ′(x, λ);

• find the value λ̂ ∈ R+ that satisfies 4(x0, λ̂) = 0, by the secant method;
• if ρ(x, λ̂) is the solution of (2.1)–(2.4)–(2.5) for a given value λ̂, then for an

arbitrary value of λ the corresponding solution can be calculated by the formula
ρ(x, λ) = ρ(xλ/λ̂, λ̂).

When ξ is less than a certain value (ξ < 0.3, in the case of N = 3), the described
method becomes unstable. In this case, it is preferable to shoot from x = δ and replace
the boundary condition at x∞ by

ρ′(x∞) =
(

2λ
√

ξ(ξ + 1) +
N − 1
2x∞

− C ′1(x∞)
C1(x∞)

)
(ξ − ρ(x∞))

4.2. The case f(y) = y−y3. In this case, according to the previous section, problem
(1.1), (1.2) has at least one solution, for sufficiently large M , if N < 4. Concerning prob-
lem (1.1), (1.3) (on the halfline), the existence of at least one solution is also guaranteed,
if N satisfies the same restriction.

The numerical algorithms used to solve both problems are similar to the ones, used
in the previous section, in the case of a different function f . The main difference is that,
when solving the problem on an infinite domain, we have to find the root of a nonlinear
system of equations, and the Newton method is applied with this purpose.

The outline of the algorithm for the problem (1.1), (1.2) is as follows:
• solve the Cauchy problem with initial condition y(δ) = y0 +

∑n1
k=2 yk(y0)δk in

[δ,M ];
• shoot on the parameter y0 so as to satisfy the condition y(M) = 0.

(a) Solutions of the problem (1.1)–(1.2) with M = 6 (b) Solutions of the problem (1.1)–(1.3)

Fig. 4.3. The case f(y) = y − y3 with N = 3

To obtain the numerical solution of the problem (1.1), (1.3) we have used the following
numerical algorithm:

• fix certain values of δ and x∞ such that x∞ > δ;
• solve the Cauchy problem with initial condition y(δ) = y0 +

∑n1
k=2 yk(y0)δk in

[δ, x∞
2 ];

• solve the Cauchy problem with initial condition
y(x∞) = 1

x
N−1

2
∞

∑n2
k=1 Ck(x∞)bk e−2λ

√
Lkx∞ in [x∞

2 , x∞];

• shoot on the parameters y0 and b, so that the solutions and their first derivatives
coincide at x∞

2 . This gives us a nonlinear system of two equations which is solved
by the Newton method.
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In Figure 4.3(a) we plot the solutions of problem (1.1),(1.2) with M = 6, N = 3 and
f(y) = y − y3. In Figure 4.3(b), the solutions of the problem (1.1), (1.3) are displayed
for the same value of N and the same function f . In both cases, we consider different
forms of the function c(x). The corresponding values of y0 in the finite domain for M = 6
and y0(inf) in the infinite domain are given in Table 4.2.

c(x) y0(M = 6) y0(inf)

1 4.3376 4.33747
1 + 1

x2+5 4.32029 4.32017

cos
(

1
2+x2

)
4.32125 4.32099

2 + e−x2
4.26728 4.26728

Table 4.2
Values of y0

5. Conclusions and Future Work. In this paper we have continued the work
developed in [10] and [11] on the analysis and numerical solution of nonlinear singular
second-order boundary value problems on unbounded domains. The numerical methods
introduced in those papers have been adapted to new classes of problems. Numerical
experiments have been carried out which have confirmed the theoretical existence results
of [3] and [7].

In the future, we are planning to extend the considered numerical methods to new
problems, which arise when searching for radial solutions of the quasilinear equation
∆mu + f(u) = 0 in Rn, where ∆m is the degenerate Laplace operator.
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