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SCALINGS IN HOMOGENISATION OF REACTION, DIFFUSION AND
INTERFACIAL EXCHANGE IN A TWO-PHASE MEDIUM

MALTE A. PETER∗ AND MICHAEL BÖHM†

Abstract. We consider the homogenisation of a coupled system of parabolic partial differential
equations in a heterogeneous two-phase medium and study various choices of scaling of the material
parameters with powers of the homogenisation parameter. The system may be regarded as modelling
a reaction–diffusion problem, the Stokes problem of single-phase flow of a slightly compressible fluid or
as a heat conduction problem (with or without interfacial resistance). A proper nondimensionalisation
shows that, depending on the ratio of the characteristic diffusion times of the different species, different
scalings of the diffusivities and the interfacial-exchange coefficient with the scale parameter ε appear
reasonable. It is shown that, starting with the same type of problem on the microscopic scale, different
choices of scaling of the diffusion coefficients (resp. permeability or conductivity) and the interfacial-
exchange coefficient lead to different types of macroscopic systems of equations in the limit. In a unified
approach, the limit problems are classified for a whole range of scaling parameters. New limit problems
arise and well-known results from the literature are recovered as special cases for certain scalings such as
the models of Barenblatt et. al and Arbogast et. al for single-phase flow.
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1. Introduction. In this note, the homogenisation of a coupled system of two partial
differential equations given on the microscopic scale is investigated, i.e. we are interested
in obtaining the system of equations describing the effective behaviour on the macroscopic
scale. The specific setting is such that we are looking at a two-phase medium (a porous
medium, for example) made up of two distinct parts (solid matrix and voids, for example)
and each equation describes the behaviour of an unknown, such as a concentration or the
temperature, e.g., in one part of the medium. The two equations are coupled by an
exchange across the internal boundary separating the two parts. The system of equations
we are considering can be used to model different physical processes such as a reaction–
–diffusion problem, the Stokes problem of single-phase flow of a slightly compressible fluid
or a heat conduction problem, also cf. (2.1).

More specifically, we consider a material body Ω ⊂ Rn, n ≥ 2, with Lipschitz-
continuous boundary which is made up of two finely interwoven parts, Ωp and Ωs. To
fix ideas, Ω is assumed to be a porous medium (motivating the superscripts p and s)
although any two-phase material can be imagined. It is assumed that Ω is periodic with
respect to a representative cell Y = (0, 1)n, scaled by the factor ε > 0, which contains a
solid particle Zs (with Lipschitz-continuous boundary) surrounded by void (pore) space
Zp, i.e. we have Ωp

ε = Ω ∩
⋃

k εZ
p

k and Ωs
ε = Ω ∩

⋃
k εZ

s

k where the subscript k denotes
translation of the set by k ∈ Zn and the subscript ε indicates the ε-periodic geometry
of the domain. It can be noted that Zs may or may not be completely contained in Y
so that Ωs may either be connected or not. However, Ωp

ε is assumed connected and, for
n = 2, this implies that Ωs

ε may not be connected. The Lipschitz-continuous interface
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separating Ωp
ε from Ωs

ε is denoted by Γε (i.e. Γε = Ω∩ Ω̄p
ε ∩ Ω̄s

ε) and its unit normal νε is
directed into Ωs

ε. Moreover, the reference time interval is S = (0, T ) with T > 0.
Before beginning with the homogenisation analysis, a proper nondimensionalisation

is carried out. Depending on the ratio of the characteristic diffusion times of the different
species, different scalings of the diffusivities and the interfacial-exchange coefficient with
the scale parameter ε appear reasonable. We remark that most authors considering similar
problems omit the nondimensionalisation.

While the (possibly approximate) value of ε is given by the underlying geometry of the
medium, the idea of homogenisation theory (cf. [6, 17, 8], for example) is to examine the
limit as ε approaches zero in order to obtain averaged problems defined in all of Ω which
are easier to treat numerically and which give useful information about macroscopically
observable processes. Depending on the particular scaling of the diffusivities and the
interfacial-exchange coefficient, different types of limit problems are obtained from the
same type of micromodel.

This note is organised as follows. After formulating the problem in its dimensional
form, we perform a nondimensionalisation which results in a system of equations where
powers of the scaling parameter ε appear in the diffusion and interfacial-exchange terms.
A-priori estimates and existence of solutions of the problem can be proven for each given
ε. The method of two-scale convergence can then be extended to allow the determination
of the limit problems depending on the choice of powers of ε. For certain choices, well-
known results from the literature are recovered while for others, new limit problems arise
(cf. Section 4, especially Subsection 4.2)

2. The problem. Introduce a characteristic macroscopic length scale L (the diam-
eter of Ω, e.g.) and a characteristic microscopic length scale ` (a typical pore diameter,
e.g.) and write ε = `/L. It is clear that we then have ε� 1. Denoting the unknowns by
up

ε and us
ε, respectively, we consider the following problem,

∂tu
p
ε(x, t)−∇ · (Dp

ε∇up
ε) = f̂p

ε , x ∈ Ωp
ε , t ∈ S,

∂tu
s
ε(x, t)−∇ · (Ds

ε∇us
ε) = f̂ s

ε, x ∈ Ωs
ε, t ∈ S,

(2.1a)

−(Dp
ε∇up

ε) · νε = −(Ds
ε∇us

ε) · νε, x ∈ Γε, t ∈ S,
−(Dp

ε∇up
ε) · νε = aε(CHup

ε − us
ε), x ∈ Γε, t ∈ S.

(2.1b)

The positive constant CH describes the ratio of us
ε and up

ε in equilibrium and f̂α
ε ,

α ∈ {p, s}, describes any internal sources or sinks. The system is completed by initial
conditions and boundary conditions at the exterior boundary. We choose homogeneous
Neumann conditions for simplicity in what follows although other types of boundary
conditions could be prescribed.

A typical situation where a system like (2.1) arises is when modelling the degradation
of concrete structures induced by carbonation. A main sub-process of the carbonation
process is that of atmospheric carbon dioxide entering the concrete through the air-filled
pores and getting dissolved in the pore water. There it reacts with dissolved constituents
of the cement paste in a reaction of the form

aA(aq) + bB(aq) → cC(aq) + . . .

In this problem, the unknowns up
ε and us

ε are the concentrations of carbon dioxide in
pore air and pore water, respectively, and Ω is actually made up of three different phases
(where one phase, the solid matrix, does not need to be considered).
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2.1. Nondimensionalisation. In order to avoid technicalities, we assume Dp
ε , Ds

ε

and aε to equal positive constants Dp, Ds and a, respectively. However, the following con-
siderations could also be carried out with positive tensors Dp

ε , Ds
ε and aε being bounded

from above and away from zero. In this case, Dp, Ds and a, need to be taken as the
respective L∞-bounds in the nondimensionalisation.

Introduce the following dimensionless concentrations,

ũp
ε := up

εC
H/up

ref , ũs
ε := us

ε/u
s
ref , (2.2)

where uα
ref , α ∈ {p, s}, are some reference concentrations representing upper bounds on the

concentrations. These may be given from physical considerations or maximum estimates,
e.g. For each concentration, define a characteristic diffusion time,

T p := `kL2−k/Dp, T s := `lL2−l/Ds, (2.3)

where k, l ∈ [0, 2] are to be specified later (cf. Subsection 2.2). Making use of the character-
istic length scales introduced earlier, let x̃ := x/L and t̃α := t/Tα be the nondimensional
(macroscopic) space and time variables and write ũα(x̃, t̃α) := uα(x̃L, t̃αTα). Note that
the corresponding time intervals are then given by S̃p := S/T p and S̃s := S/T s. More-
over, we introduce the parameter m ∈ R related to the speed of the interfacial exchange
(also cf. Subsection 2.2, in particular after (2.8)). Dropping the tildes again and assuming
nondimensional variables in what follows, (2.1) transforms to

∂tpu
p
ε − εk∆up

ε =
T pCH

up
ref

f̂p
ε , x ∈ Ωp

ε ,

∂tsu
s
ε − εl∆us

ε =
T s

us
ref

f̂ s
ε, x ∈ Ωs

ε,

(2.4a)

−εk∇up
ε · νε = εm`−mLm−1T pa(up

ε − us
εu

s
ref/u

p
ref), x ∈ Γε,

−εl∇us
ε · νε = εm`−mLm−1T sa(up

εu
p
ref/u

s
ref − us

ε), x ∈ Γε,
(2.4b)

where tα ∈ Sα, α ∈ {p, s}, and we have ts = tpT p/T s in (2.4b). From a physical point
of view, conditions (2.4b) motivate the assumption that both concentrations tend toward
the equilibrium up

refu
p
ε = us

refu
s
ε. Therefore, it is reasonable to take us

ref = up
ref =: uref ,

which makes the problem less technical. Note that this simplification is not necessary,
however. Introducing the following dimensionless combinations,

Cp
ex := `−mLm−1T pa, Cs

ex := `−mLm−1T sa, (2.5)

Rp :=
T pCH

uref
, Rs :=

T s

uref
, (2.6)

and writing fα
ε := Rαf̂α

ε , the system simplifies to

∂tpu
p
ε − εk∆up

ε = fp
ε , x ∈ Ωp

ε , t
p ∈ Sp,

∂tsu
s
ε − εl∆us

ε = f s
ε , x ∈ Ωs

ε, t
s ∈ Ss,

(2.7a)

−εk∇up
ε · νε = εmCp

ex(u
p
ε − us

ε), x ∈ Γε,

−εl∇us
ε · νε = εmCs

ex(u
p
ε − us

ε), x ∈ Γε.
(2.7b)
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2.2. Choice of k, l and m. System (2.7) contains three parameters, k, l and
m, introduced by the nondimensionalisation. From the nondimensionalisation we get a
suggestion which choice of parameters is reasonable: It is desirable (especially from a
numerical point of view) that all processes happen on the same time scale. Therefore,
k and l need to be chosen such that the characteristic times of diffusion of both species
are equal and about one, T1 = T2 ≈ 1. Note that this implies Sp = Ss =: S and
Cp

ex = Cs
ex =: Cex. System (2.7) then simplifies to

∂tu
p
ε − εk∆up

ε = fp
ε , x ∈ Ωp

ε , t ∈ S,
∂tu

s
ε − εl∆us

ε = f s
ε , x ∈ Ωs

ε, t ∈ S,
(2.8a)

−εk∇up
ε · νε = εmCex(up

ε − us
ε), x ∈ Γε, t ∈ S,

−εl∇us
ε · νε = εmCex(up

ε − us
ε), x ∈ Γε, t ∈ S.

(2.8b)

The parameter m is to be chosen such that Cex ≈ 1. Note that this corresponds to
a ≈ εmL/T1, i.e. m needs to be chosen small (or even negative) if a is large and large and
positive if a is small.

For future reference, we state the weak form of problem (2.8). We denote the L2(Ωα
ε )-

-scalar product by ( · | · )Ωα
ε

and define

V (Ω) := L2(S;W 1,2(Ω)) and V(Ω) := {u ∈ V (Ω) | ∂tu ∈ L2(Ω× S)}. (2.9)

The weak form of problem (2.8) then reads as follows. Find (up
ε , u

s
ε) ∈ V(Ωp

ε) × V(Ωs
ε)

such that uα
ε (0) = uα

0 ∈ L2(Ω) for α ∈ {p, s} and

(∂tu
p
ε(t) |φ(t))Ωp

ε
+ εk(∇up

ε(t) |∇φ(t))Ωp
ε

= (fp
ε (t) |φ(t))Ωp

ε
− εm(f ex

ε (t) |φ(t))Γε ,
(2.10a)

(∂tu
s
ε(t) |ψ(t))Ωs

ε
+ εl(∇us

ε(t) |∇ψ(t))Ωs
ε

= (f s
ε(t) |ψ(t))Ωs

ε
+ εm(f ex

ε (t) |ψ(t))Γε

(2.10b)

for all (φ, ψ) ∈ V (Ωp
ε) × V (Ωs

ε) and a.e. t ∈ S where the interfacial-exchange term has
been abbreviated by f ex

ε ,

f ex
ε (x, t) = Cex(up

ε(x, t)− us
ε(x, t)), (2.11)

for ease of notation. Problem (2.10) is of a suitable form for a homogenisation analysis. We
remark that most authors start with this form omitting the proper nondimensionalisation.

3. A-priori estimates, convergence and literature remarks. We use the method
of two-scale convergence [13, 1, 2] together with some extensions [16] to determine the
limit problems associated with (2.10) as ε approaches zero.

In addition to the assumptions made in the previous section, we further require that
the sequences fα

ε (x, t), α ∈ {p, s}, are bounded independently of ε in L2(Ωα
ε × S) and

therefore have two-scale limits denoted by fα(x, y, t).
Under these assumptions, the following theorem is obtained by variational techniques

where the notation

|u(t)|2Ω = (u(t) |u(t))Ω and |u|2Ω,t =

t∫
0

(u(s) |u(s))Ω ds (3.1)
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is used.
Theorem 3.1. For fixed ε > 0, there exists a solution (up

ε , u
s
ε) ∈ V(Ωp

ε) × V(Ωs
ε) of

problem (2.10) such that

|up
ε(t)|Ωp

ε
+ εk/2|∇up

ε |Ωp
ε ,t + |us

ε(t)|Ωs
ε
+ εl/2|∇us

ε|Ωs
ε,t + εm/2|up

ε − us
ε|Γε,t ≤ C1(3.2a)

for a.e. t ∈ S. Furthermore, if we have m ≥ 1 or up
0 = us

0 on Γε, we also have

|∂tu
p
ε(t)|Ωp

ε
+ |∂tu

s
ε(t)|Ωs

ε
≤ C2 (3.2b)

for a.e. t ∈ S. The constants C1, C2 depend on the data appearing in (2.10) and the
initial values but not on ε.

For the determination of the two-scale limits of the terms in (2.10), the method of
two-scale convergence needs to be extended. A detailed presentation of these results also
including the case k > 2 or l > 2 can be found in [16] and will also be presented in a
forthcoming publication.

At this point, we would like to point out that the results for some choices of the
parameters can be found in the literature. We briefly discuss a selection of contributions.
For example, the distributed-microstructure model of Arbogast et al. [3] modelling the
flow of a slightly compressible fluid in a fissured medium is obtained for k = 0, l = 2,
m = 0. The parallel-flow model for the same physical application (the macromodel
of which has been suggested by Barenblatt et al. [5]) is obtained for k = 0, l = 0,
m = 1, cf. [10] for the homogenisation of the stationary case. The problem of miscible
displacement in a porous medium has been considered by Hornung [11] where also a
Robin-type transmission condition at the pore-matrix interface is assumed. Here, the
choice of scaling was also k = 0, l = 2, m = 1.

Moreover, similar problems focusing on the different choices of scaling have been
discussed. In particular, for k = l = 0 and varying m, similar problems have been studied
quite extensively. Auriault and Ene [4] seem to be the first to examine different choices
of m by formal techniques. Most notably, we would like to mention the works of Canon
and Pernin [7] who considered the stationary case with k = l = 0 varying m and both
subdomains connected and Pankratov et al. [15] who considered the case k = 0 varying l
with a matched boundary condition on Γε and Ωs

ε disconnected. It should also be pointed
out that the case k, l = 0 and Ωs

ε disconnected is not covered in [16], the treatment of
which can be found in [12, 9] by different techniques for the stationary case. We would
also like to mention the book by Panfilov [14] who investigates the influence of scalings
when modelling flow in porous media.

4. The macroscopic limit problems. The macroscopic limit problems of problem
(2.10) are now stated. Obviously, different choices of the scaling exponents k, l and m
need to be distinguished. Moreover, we assume Ωs

ε connected if l = 0.
To ease notation, when referring to the limit function uα, α ∈ {p, s}, the scaling

exponent is denoted by λ, i.e. λ = k if α = p and λ = l if α = s. Moreover, if k 6= l,
we assume k < l. Note that this does cause any restriction of generality owing to the
symmetry of the problem.

In order to be able to write the macroscopic limit equations in a simple way, two
factors are introduced:

θ(λ) :=

{
1, λ = 0 or λ = 2,
0, 0 < λ < 2,

σα(m) :=


−1, α = p, m = 1,
1, α = s, m = 1,
0, α ∈ {p, s}, m 6= 1.

(4.1)
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It is useful to distinguish the cases m ≥ 1 and m < 1 as these correspond to par-
ticularly different limit behaviours. Note that independently of the choice of m, uα is
independent of the spatial variable y if λ < 2.

4.1. The case m ≥ 1. In this case, the limit functions up and us need to be con-
sidered separately. Therefore, it suffices to discuss the limit problem associated with one
unknown uα. The total limit problem of (2.10) is then given by the respective equations
for α = p and α = s. The solutions of two cell problems are required. For α ∈ {p, s}, let
ςαj , j = 1, . . . , n, be the Y -periodic solution of the cell problem

−∇y · (∇yς
α
j (y) + ej) = 0, y ∈ Zα, (4.2)

the weak form of which is given by

(∇yς
α
j + ej |∇yφ)Zα = 0 (4.3)

for all Y -periodic test functions φ. The vector ej is the jth unit vector in n-dimensional
Euclidean space. This allows the definition of the tensors Pα = [pα

jk]jk via

pα
jk =

∫
Zα

δjk + ∂yj
ςαk (y) dy, (4.4)

where δjk is the Kronecker delta. These tensors turn out to be the diffusion tensors in
the macroscopic limit problems. They are symmetric and positive definite (cf. [8], for
example).

In order to be able to formulate the macroscopic limit equations in a simple way, the
limit of the interfacial-exchange term is written as

f ex(x, y, t) = Cex(up(x, y, t)− us(x, y, t)). (4.5)

The limit problems can now be stated. If 0 ≤ λ < 2, the macroscopic limit problem of
problem (2.10) is given by

|Zα|(∂tu
α(t)) |φ(t))Ω + θ(λ) (Pα(t)∇uα(t) |∇φ(t))Ω

= (
∫

Zα

fα( · , y, t) dy |φ(t))Ω + σα(m)(
∫
Γ

f ex( · , y, t) dσy |φ(t))Ω (4.6)

for all φ ∈ V (Ω) and a.e. t ∈ S. If λ = 2, the macroscopic limit problem of problem
(2.10) is given by

(∂tu
α(t) |ψ(t))Ω×Zα + (∇yu

α(t) |∇yψ(t))Ω×Zα

= (fα(t) |ψ(t))Ω×Zα + σα(m)(f ex(t) |ψ(t))Ω×Γ

(4.7)

for all ψ ∈ W(Zα) := L2(S;L2(Ω;W 1,2
# (Zα))) and a.e. t ∈ S.

4.2. The case m < 1. In this case, the limit functions satisfy up(x, y, t) = us(x, y, t)
for a.e. x ∈ Ω, y ∈ Γ, t ∈ S. It therefore makes sense to define

u(x, y, t) = χp(y)up(x, y, t) + χs(y)us(x, y, t), (4.8)

where χp and χs are the characteristic functions of Zp and Zs, respectively, and look for
the single equation satisfied by u. For ease of notation, we also define

f(x, y, t) = χp(y)fp(x, y, t) + χs(y)f s(x, y, t). (4.9)
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For m < 1, an additional assumption is necessary if k 6= l and m ≤ k − 1. In this
case, let

ε(k−1)/2|up
ε |Γε + ε(k−1)/2|us

ε|Γε ≤ C (4.10)

additionally be satisfied. Note that this condition cannot be obtained without making
further assumptions. Moreover, the solutions of the following cell problems are needed:
For l = 0, let ςm,l

j , j = 1, . . . , n, be the Y -periodic solution of the cell problem

−∇y · (∇yς
m,l
j (y) + ej) = 0, y ∈ Zp ∪ Zs, (4.11a)

subject to the following boundary conditions on Γ,

−(∇y(ςm,l
j )α(y) + ej) · ν = 0, if m > −1,

−(∇y(ςm,l
j )α(y) + ej) · ν − Cex[(ςm,l

j )p(y)− (ςm,k,l
j )s(y)] = 0, if m = −1,

(ςm,l
j )p(y)− (ςm,l

j )s(y) = 0,
(∇y(ςm,l

j )p(y) + ej) · ν − (∇y(ςm,l
j )s(y) + ej) · ν = 0,

}
if m < −1.

(4.11b)

For l > 0, let ςm,l
j , j = 1, . . . , n, be the Y -periodic solution of the cell problem

−∇y · (∇yς
m,l
j (y) + ej) = 0, y ∈ Zp, (4.12a)

subject to to the following boundary conditions on Γ,

−(∇yς
m,l
j (y) + ej) · ν = 0, if m > −1,

−(∇yς
m,l
j (y) + ej) · ν + Cex(ςm,l

j (y) + (y |∇u)) = 0, if m = −1,

ςm,l
j (y) = 0, if m < −1.

(4.12b)

This allows the definition of the tensors Pm,l = [pm,l
ij ]ij via

pm,l
ij =


∫
Y

δij + ∂yi
ςm,l
j (y) dy, if l = 0,∫

Zp
δij + ∂yiς

m,l
j (y) dy, if l 6= 0.

(4.13)

Note that in the case l > 0 and m = −1, this tensor is dependent on ∇u.
The limit problems can now be stated. If 0 ≤ k, l < 2, the macroscopic limit problem

of problem (2.10) is given by

(∂tu(t) |φ(t))Ω + θ(k) (Pm,l(t)∇u(t) |∇φ(t))Ω = (
∫
Y

f( · , y, t) dy |φ(t))Ω (4.14)

for all φ ∈ V (Ω), if k = 0, and φ ∈ L2(Ω × S), if k > 0, and a.e. t ∈ S. If k, l = 2, the
macroscopic limit problem is given by

(∂tu(t) |ψ(t))Ω×Y + (∇yu(t) |∇yψ(t))Ω×Zp

+ (∇yu(t) |∇yψ(t))Ω×Zs = (f(t) |ψ(t))Ω×Y

(4.15)

for all ψ ∈ {ψ = χpψp + χsψs |ψα ∈ W(Zα), ψp = ψs on Γ} and a.e. t ∈ S where ψ = 0



376 M. A. Peter and M. Böhm

on Γ if k 6= l. If k < 2 and l = 2, the limit problem is given by

|Zp|(∂tu
p(t) |φ(t))Ω + θ(k) (Pm,l(t)∇up(t) |∇φ(t))Ω

= θ(l)(
∫
Γ

∇yu
s( · , y, t) · ν dσy |φ(t))Ω + (

∫
Zp

fp( · , y, t) dy |φ(t))Ω (4.16a)

(∂tu
s(t) |ψ(t))Ω×Zs + θ(l)(∇yu

s(t) |∇yψ(t))Ω×Zs = (f s |∇yψ(t))Ω×Zs (4.16b)

for all (φ, ψ) ∈ V (Ω)×W(Zs), where ψ = 0 on Γ, and a.e. t ∈ S, together with up = us

on Γ. Note that the tensor Pm,l only appears in the above equations if k = 0.

REFERENCES

[1] G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal. 23(6) (1992), 1482–
–1518.

[2] G. Allaire, A. Damlamian and U. Hornung Two-scale convergence on periodic surfaces and appli-
cations, In: Proceedings of the international conference on mathematical modelling of flow through
porous media (ed. by A. P. Bourgeat, C. Carasso, S. Luckhaus and A. Mikelic), pp. 15–25, World
Scientific, 1995.

[3] T. Arbogast, J. Douglas Jr. and U. Hornung, Derivation of the double porosity model of single
phase flow via homogenization theory, SIAM J. Math. Anal. 21(4) (1990), 823–836.

[4] J.-L. Auriault and H. I. Ene, Macroscopic modelling of heat transfer in composites with interfacial
thermal barrier, Int. J. Heat Mass Tranfer 37(18) (1994), 2885–2892.

[5] G. I. Barenblatt, I. P. Zheltov and I. N. Kochina, Basic concepts in the theory of seepage of
homogeneous liquids in fissured rocks, J. Appl. Math. Mech. 24 (1960), 1286–1303.

[6] A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic anaylsis for periodic structures.
North-Holland, 1978.
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