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NEW ROSENBROCK METHODS OF ORDER 3
FOR PDAES OF INDEX 2

JOACHIM RANG∗ AND LUTZ ANGERMANN†

Abstract. In this note new Rosenbrock-methods for index 2 PDAEs are presented. These solvers
are of order 3, have 4 internal stages, and satisfy certain order conditions to improve the convergence
properties if inexact Jacobians and approximations of ∂f

∂t
are used. A comparison with other Rosenbrock

solvers shows the advantages of the new methods.
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1. Introduction. In the papers [11] and [4] the Navier–Stokes equations

u̇−Re−1∆u + (u · ∇)u +∇p = f in J × Ω,
∇ · u = 0 in J × Ω,

u = g on J × ∂Ω,
u(0, x) = u0 x ∈ Ω,

(Re denotes the positive Reynolds number) is solved numerically by the help of Rosen-
brock methods. It is well known that on the one hand the semi-discretized Navier–Stokes
equations form a MOL-DAE of index 2 (see [1] or [15]) and that on the other hand Rosen-
brock methods have to satisfy certain conditions for DAEs of index 2 and for PDEs (see
[8] and [7]). The Rosenbrock methods considered in [11] and [4] satisfy only one of the
two conditions. The method ROWDA2IND (see [8]) is a method for DAEs of index 2
and most of the other methods, for example ROS3P (see [5, 6]) ROS3Pw, ROS34PW2
(see [11]) or ROSDAP (see [13]), are schemes for solving PDAEs of index 1. Moreover,
the numerical examples in the above-mentioned papers have shown that Rosenbrock W-
methods yield very good results. So the motivation for this paper was to create some new
Rosenbrock methods for PDAEs of index 2. The new methods are of order 3 and have 4
internal stages.

The numerical comparisons presented at the end of the paper illustrate the good
qualities of the methods in both academic and more practical problems.

2. Rosenbrock methods. An s-stage Rosenbrock-method for the implicit ODE

Mu̇ = f(t, u), u(t0) = u0 (2.1)
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is given by

Mki := τ f

told + αi τ, uold +
i−1∑
j=1

αij kj


+ τ W

i∑
j=1

γij kj + τ2γiT, i = 1, . . . , s

unew := uold +
s∑

i=1

bi ki

(2.2)

where s is the number of internal stages, τ is the step length, αij , γij , bi are the parameters
of the method, W := f ′(told, uold), T := ḟ(told, uold), αi :=

∑i−1
j=1 αij , and γi :=

∑i−1
j=1 γij .

The values ki are unknown. By “ ˙ ” and “ ′ ” we denote differentiation with respect to
the time t and the phase space variable, respectively.

The parameters αij , γij , and bi should be chosen in such a way that some order
conditions are fulfilled to obtain a sufficient consistency order. A derivation of these
conditions with Butcher series can be found in [2]. Here we only summarize the conditions
up to order 3: 

(A1)
∑

bi = 1

(A2)
∑

biβi = 1
2 − γ

(A3a)
∑

biα
2
i = 1

3

(A3b)
∑

biβijβj = 1
6 − γ + γ2

, (2.3)

where we use the abbreviations βij := αij +γij and βi :=
∑i−1

j=1 βij . We get an additional
consistency condition if we set W := f ′(told, uold) +O(h) (see [14]):

(B2)
∑

biαi = 1
2 . (2.4)

For arbritary matrices W , we get the following order conditions (see [14]):
(C3a)

∑
biαijαj = 1

6

(C3b)
∑

biαijβj = 1
6 −

γ
2

(C3c)
∑

biβijαj = 1
6 −

γ
2

. (2.5)

If a Rosenbrock-method is applied to semidiscretized PDAEs and PDEs, resp., the fol-
lowing condition should be satisfied to avoid order reduction (see [7]):

b>Bj(2B2e− α2) = 0, 1 ≤ j ≤ 2 (2.6)

with B := (βij)s
i,j=1, α2 := (α2

1, . . . , α
2
s)
>, and e := (1, . . . , 1)> ∈ Rs. To obtain conver-

gence, the Rosenbrock-method should fulfill certain order conditions for both the ODE
and the algebraic part. These consistency properties can be derived again via Butcher
series technique (see [2] and [12]). For a third-order method we get the condition

(E3)
∑

biωijα
2
j = 1, (2.7)

where (ωij)s
i,j=1 = B−1.
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From [8] we know that a Rosenbrock method should satisfy certain order conditions
if the method is applied on an index-2 DAE, i.e.

(F3a)
∑

biωijωjkα2
k = 2

(F3b)
∑

biαiαijωjkωklα
2
l = 2

3

(F3c)
∑

biωijαjαjkωklωlmα2
m = 2

(2.8)

If u2 appears non-linearly in the semi-explicit DAE

u̇1 = f1(u1, u2),
0 = f2(u1),

then the condition

(G3)
∑

biαijωjkωklα
2
l αlmωmnωnrα

2
r = 4

3 (2.9)

has to be satisfied (see [8]).
The stability function of (2.2) is given by

R0(z) = 1 + zb>(I − zB)−1e,

where b = (b1, . . . , bs)> and e = (1, . . . , 1)>.

3. Construction of methods. We start with the following result.

Lemma 3.1. There exists no Rosenbrock method of order 3 with 3 internal stages which
satisfies (2.3), (2.6), (F3b), and (F3c).

Proof. This result can be shown by an easy calculation.

Let us now consider Rosenbrock methods with 4 internal stages. The order conditions
in this case read as (see [2])

(A1) b1 + b2 + b3 + b4 = 1

(A2) b2β2 + b3β3 + b4β4 = 1
2 − γ

(A3a) b2α
2
2 + b3α

2
3 + b4α

2
4 = 1

3

(A3b) b3β32β2 + b4(β42β2 + β43β3) = 1
6 − γ + γ2

(B2) b2α2 + b3α3 + b4α4 = 1
2

(C3a) b3α32α2 + b4(α42α2 + α43α3) = 1
6

(C3b) b3α32β2 + b4(α42β2 + α43β3) = 1
6 −

γ
2

(C3c) b3β32α2 + b4(β42α2 + β43α3) = 1
6 −

γ
2

Lemma 3.2. (see [11]) The conditions for PDEs (2.6) can be simplified by the help of
(A1), (A2), (A3a), and (A3b) to

(D3a) b4β32β43α
2
2 = 2γ4 − 2γ3 + 1

3γ2

(D3b) b3β32α
2
2 + b4(β42α

2
2 + β43α

2
3) = 2γ3 − 3γ2 + 2

3γ

(D3c) b4β43β32β21 = 0
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Remark: The expressions b3β32α
2
2 + b4(β42α

2
2 + β43α

2
3) and b4β43β32β21 are known as

part of the order-conditions for 4th-order Rosenbrock-methods (see [2]).
The algebraic order condition reads as (see [2])

(E3) b2ω22α
2
2 + b3(ω32α

2
2 + ω33α

2
3) + b4(ω42α

2
2 + ω43α

2
3 + ω44α

2
4) = 1 .

Lemma 3.3. A Rosenbrock-method which satisfies (A1)–(A3b) and (D3a)–(D3c) fulfills
(E3), too.

Proof. See [11]).

Lemma 3.4. A Rosenbrock-method which satisfies (A1)–(A3b) and (D3a)–(D3c) fulfils
(F3a), too.

Proof. see [9].

The conditions (F3b) and (F3c) can be written as follows
(F3b) γ(b3α3α32α

2
2 + b4α4(α42α

2
2 + α43α

2
3))− 2b4α4α43β32α

2
2 = 2

3γ3

(F3c) b4β43α3α32α
2
2 = 2

3γ3 − 2γ4

The embedded methods should be L-stable, too. Therefore we need the following
result from [11].

Lemma 3.5. Let a Rosenbrock method which satisfies (A1)–(A3b) and (D3a)–(D3c) be
given. The embedded method satisfying (A1) and (A2) is L-stable, too, if

b̂4 =
1

β3β43

[
γ3 − 2γ2 +

1
2
γ

]
. (3.1)

Proof. See [11].

Table 3.1
Set of coefficients for ROSI2P1

γ = 4.3586652150845900e− 01

α21 = 5.0000000000000000e− 01 γ21 = −5.0000000000000000e− 01
α31 = 5.5729261836499822e− 01 γ31 = −6.4492162993321323e− 01
α32 = 1.9270738163500176e− 01 γ32 = 6.3491801247597734e− 02
α41 = −3.0084516445435860e− 01 γ41 = 9.3606009252719842e− 03
α42 = 1.8995581939026787e + 00 γ42 = −2.5462058718013519e− 01
α43 = −5.9871302944832006e− 01 γ43 = −3.2645441930944352e− 01

b1 = 5.2900072579103834e− 02 b̂1 = 1.4974465479289098e− 01

b2 = 1.3492662311920438e + 00 b̂2 = 7.0051069041421810e− 01

b3 = −9.1013275270050265e− 01 b̂3 = 0.0000000000000000e + 00

b4 = 5.0796644892935516e− 01 b̂4 = 1.4974465479289098e− 01

3.1. An L-stable Rosenbrock method. Our first method is L-stable and satisfies
the conditions (A1)–(A3b), (B2), (C3a)–(C3c), (D3a)–(D3c), (F3b), and (F3c). We call
the method ROSI2P1, where ROS stands for Rosenbrock, I2 for index 2 problems, P for
semi-discretized PDE problems, and 1 is an internal number. To find a solution of the
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equations given above, we have used the software environment ”MAPLE”. We choose the
free variables as follows: α2 = 1/2, α3 = 3/4, and α4 = 1. The coefficients of ROSI2P1
are given in Table 3.1. The embedded method satisfies the conditions (A1), (A2), and
(3.1). Moreover we set b̂3 = 0. The resulting system of equations can be solved easily.

3.2. A stiffly accurate Rosenbrock method. A Rosenbrock method satisfying

βsi = bi, i = 1, . . . , s, and αs = 1 (3.2)

is called stiffly accurate. Methods which satisfy (3.2) yield asymptotically exact results
for the problem u̇ = λ(u−ϕ(t))+ ϕ̇(t). A stiffly accurate Rosenbrock method is L-stable,
i.e. γ ≈ 0.4358665 (see [2] or [11]).

Our conditions simplify to (see [11] and [8])

(A1’) b1 + b2 + b3 = 1− γ

(A2’) b2β2 + b3β3 = 1
2 − 2γ + γ2

(A3a’) b2α
2
2 + b3α

2
3 = 1

3 − γ

(A3b’) b3β32β2 = 1
6 −

3
2γ + 3γ2 − γ3

(B2’) b2α2 + b3α3 = 1
2 − γ

(C3a’) b3α32α2 + γ(α42α2 + α43α3) = 1
6

(C3b’) b3α32β2 + γ(α42β2 + α43β3) = 1
6 −

γ
2

(C3c’) b3β32α2 = 1
6 − γ + γ2

(D3a’) b3β32α
2
2 = 2γ3 − 2γ2 + 1

3γ

(D3c’) b3β32β2 = 0

(F3b’) γ(α42α
2
2 + α43α

2
3)− 2α43β32α

2
2 = 2γ3

(F3c’) b3α3α32α
2
2 = 2

3γ2 − 2γ3

Table 3.2
Set of coefficients for ROSI2P2

γ = 4.3586652150845900e− 01

α21 = 5.0000000000000000e− 01 γ21 = −5.0000000000000000e− 01
α31 = −5.1983699657507165e− 01 γ31 = −4.0164172503011392e− 01
α32 = 1.5198369965750715e + 00 γ32 = 1.1742718526976650e + 00
α41 = −5.1983699657507165e− 01 γ41 = 1.1865036632417383e + 00
α42 = 1.5198369965750715e + 00 γ42 = −1.5198369965750715e + 00
α43 = 0.0000000000000000e + 00 γ43 = −1.0253318817512568e− 01

b1 = 6.6666666666666663e− 01 b̂1 = −9.5742384859111473e− 01

b2 = −5.4847955522165341e− 32 b̂2 = 2.9148476971822297e + 00

b3 = −1.0253318817512568e− 01 b̂3 = 5.0000000000000000e− 01

b4 = 4.3586652150845900e− 01 b̂4 = −1.4574238485911146e + 00

Our new method should satisfy the conditions (A1’)–(A3b’), (D3a’), (D3c’), (F3b’),
and (F3c’). Moreover we set α2 = 1/2, α41 = α31, α42 = α32, and α43 = 0, i.e. the
method needs only three function evaluations. First we note that β2 = 0. This follows
from (D3a’) and (D3c’). With (F3b’) we get α42 = 8γ2. Inserting this result into (F3c’)
yields b3 = 1/3− γ. Using (D3a’) we obtain

β32 = 4
2γ3 − 2γ2 + 1

3γ

1/3− γ
.
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The remaining coefficients can be computed by the help of (A1’), (A2’), and (A3a’). The
new method is called ROSI2P2 and its coefficients are given in Table 3.2. The embedded
method satisfies the conditions (A1), (A2), and (3.1). Moreover we set b̂3 = 1/2. This
system of equations can be solved easily.

3.3. A stiffly accurate Rosenbrock method with W = fu +O(h) and T = 0.
Our new method should satisfy the conditions (A1’)–(A3b’), (B2’), (C3c’), (D3a’), (D3c’),
(F3b’), (F3c’), and (G3). The condition (G3) can be simplified to

α43α
2
3α32α

2
2 =

4
3
γ3.

As the free variable we choose α3 = 3/4. As in the previous section we have β2 = 0.
The variable α2 = 2γ can be determined by (D3a’) and (C3c’). The equations (A3a) and
(B2) form a linear system of equations in the variables b2 and b3. Then the remaining
coefficients can be determined easily. The method is called ROSI2Pw and the coefficients
are given in Table 3.3. The embedded method satisfies the conditions (A1), (A2), and
(3.1). Moreover we set b̂3 = 0. This system of equations can be solved easily.

Table 3.3
Set of coefficients for ROSI2Pw

γ = 4.3586652150845900e− 01

α21 = 8.7173304301691801e− 01 γ21 = −8.7173304301691801e− 01
α31 = 7.8938917169345013e− 01 γ31 = −8.4175599602920992e− 01
α32 = −3.9389171693450180e− 02 γ32 = −1.2977652642309580e− 02
α41 = 6.2787416864263046e− 01 γ41 = −3.7964867148089526e− 01
α42 = 6.9295440480994763e + 00 γ42 = −8.3490231248017537e + 00
α43 = −6.5574182167421071e + 00 γ43 = 8.2928052747741905e + 00

b1 = 2.4822549716173517e− 01 b̂1 = 4.4315753191688778e− 01

b2 = −1.4194790767022774e + 00 b̂2 = 4.4315753191688778e− 01

b3 = 1.7353870580320832e + 00 b̂3 = 0.0000000000000000e + 00

b4 = 4.3586652150845900e− 01 b̂4 = 1.1368493616622447e− 01

3.4. A stiffly accurate Rosenbrock W-method. In the following a Rosenbrock
method is constructed which satisfies the conditions (A1’)–(A3b’), (B2’), (C3a’)–(C3c’),
(D3a’), (D3c’), (F3b’), and (F3c’). We have 12 equations and 12 unknowns. Note that 5
unknowns are determined by (3.2). There are no free variables. The coefficients α2 = 2γ
and β2 = 0 can be computed as the in the previous section. Let us assume that we
know the coefficient α3. Then (A3a’) and (B2’) form a linear system of equations in the
unknowns b2 and b3. The solution depends on α3 and is given by

b2 =
1
12

6α3γ + 2− 6γ − 3α3

γ(2γ − α3)
, b3 = −1

3
6γ2 − 6γ + 1
α3(2γ − α3)

.

An esay computation shows that

α3 = 6
γ2(−14γ2 + 6γ3 − 1 + 7γ)

−12γ + 36γ2 − 6γ3 − 72γ4 + 36γ5 + 1
≈ −1.55 < 0.

The method is called ROSI2PW and the coefficients are given by Table 3.4. The em-
bedded method satisfies the conditions (A1), (A2), and (3.1). Moreover we set b̂3 = 0.
This system of equations can be solved easily.
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Table 3.4
Set of coefficients for ROSI2PW

γ = 4.3586652150845900e− 01

α21 = 8.7173304301691801e− 01 γ21 = −8.7173304301691801e− 01
α31 = −7.9937335839852708e− 01 γ31 = 3.0647867418622479e + 00
α32 = −7.9937335839852708e− 01 γ32 = 3.0647867418622479e + 00
α41 = 7.0849664917601007e− 01 γ41 = −1.0424832458800504e− 01
α42 = 3.1746327955312481e− 01 γ42 = −3.1746327955312481e− 01
α43 = −2.5959928729134892e− 02 γ43 = −1.4154917367329144e− 02

b1 = 6.0424832458800504e− 01 b̂1 = 4.4315753191688778e− 01

b2 = −3.6210810811598324e− 32 b̂2 = 4.4315753191688778e− 01

b3 = −4.0114846096464034e− 02 b̂3 = 0.0000000000000000e + 00

b4 = 4.3586652150845900e− 01 b̂4 = 1.1368493616622447e− 01

4. Comparison of Rosenbrock methods and numerical results. All examples
are solved numerically by the help of the FEM-package MooNMD3.0 (see [3]) on a uniform
spatial grid consisting of 1024 quadrangles, i.e. h = 2−5. We compare our new methods
with other well-known Rosenbrock methods such as ROS3P, ROS3Pw, ROS34PW2, and
RODASP. An overview of the selected Rosenbrock methods can be found in Table 4.1.

We apply these schemes to a PDAE of index 2 and to the Navier–Stokes equations
with different right-hand sides. For the definition of the index of linear PDAEs we refer
to the paper [10].

The global error ε is measured in the discrete L2-norm

‖ε‖l2(J,V ) :=

(
τN

N∑
n=0

‖un − u(tn)‖2V

)1/2

,

where V := L2(Ω) or H1(Ω) and τN is a time-step depending on N ∈ N. In this section,
the letter J is used to denote a time interval.

Table 4.1
Properties of the selected Rosenbrock methods

Name s p Index 1 Index 2 PDEs R(∞) stiffly acc. reference

ROS3P 3 3 yes no yes 0.73 no [6]

ROWDAIND2 4 3 yes yes no 0 yes [8]

ROS3Pw 3 3 yes no yes 0.73 no [11]

ROS34PW2 4 3 yes no yes 0 yes [11]

RODASP 6 4 yes no yes 0 yes [13]

ROSI2P1 4 3 yes yes yes 0 no see Section 3.1

ROSI2P2 4 3 yes yes yes 0 yes see Section 3.2

ROSI2Pw 4 3 yes yes yes 0 yes see Section 3.3

ROSI2PW 4 3 yes yes yes 0 yes see Section 3.4

Example 4.1. Let J := (0, 1) and Ω := (0, 1). We consider the following nonlinear
PDAE

u̇1 −∆u1 − u3u̇2 + u̇2u3 = 2ε2ωt in J × Ω,
∆u2 = 0 in J × Ω,
∆u3 = 0 in J × Ω,

u̇4 −∆u4 − λ∆u1 = −e−t(x2 + 2)− 2λε2ωt in J × Ω

(4.1)
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where λ, ε and ω are free parameters. The right-hand side f , the initial conditions and
the non-homogeneous Dirichlet boundary conditions are chosen such that

u1(t, x, y) = x2ε2ωt,

u2(t, x, y) = xε sinωt,

u3(t, x, y) = xε cos ωt,

u4(t, x, y) = 1 + e−tx2

is the solution of (4.2). Moreover we set ε = ω = λ = 1. For the semi-discretization in
space we used central finite differences with step length h = 1/100. The computations
were carried out with time steps τN = 1

10N with N = 1, 2, 4, 8, 16, 32, 64, 128. The Jaco-
bian is computed exactly. Note that all occurring discretization errors will results from
the temporal discretization. Figure 4.1 shows the results of the calculation.

0 2 4 6 8
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

timestep

e
rr

o
r 

u

ROWDAIND2
ROS3P
ROS3Pw
ROS34PW2
RODASP
ROSI2P1
ROSI2P2
ROSI2Pw
ROSI2PW

Fig. 4.1. Example 4.1, results

The most inaccurate results were obtained with the methods for PDAEs of index 1,
namely ROS3P, ROS3Pw and ROS34PW2. This is due to the fact that these methods
do not satisfy the conditions (F3b) and (F3c). The method ROWDAIND2 satisfies these
conditions, but it has order reduction because a semidiscretized PDAE is solved. The best
results were obtained with the fourth order method RODASP and the solvers ROSI2P1,
ROSI2P2, ROSI2Pw, and ROSI2PW.

Example 4.2. Let J := (0, 1) and Ω := (0, 1)2. We consider the Navier–Stokes equations

u̇−Re−1∆u + (u · ∇)u +∇p = f in J × Ω,
∇ · u = 0 in J × Ω,

u = g on J × ∂Ω,
u(0, x) = u0 x ∈ Ω,

(4.2)

where Re denotes the positive Reynolds number. The right-hand side f , the initial
condition u0 and the non-homogeneous Dirichlet boundary conditions are chosen such
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that

u1(t, x, y) = t3y2,

u2(t, x, y) = t2x,

p(t, x, y) = tx + y − (t + 1)/2

is the solution of (4.2). Moreover we set Re = 1. We used the Q2/P disc
1 discretization on

a square mesh with an edge length h = 1/64 and solve the problem with variable time
step sizes. The Jacobian is computed exactly. Note that for any t the solution can be
represented exactly by the discrete functions. Hence, all occurring discretization errors
will results from the temporal discretization. During the calculations we have to deal
with 33 282 d.o.f. for the velocity and 11 288 d.o.f. for the pressure. Figure 4.2 shows
the results of the calculation.
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Fig. 4.2. Example 4.2, results

Considering the velocity error it can be observed that the fourth order method RO-
DASP gave the best results. All other schemes gave good results, too. A similar obser-
vation can be made for the pressure error.
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Fig. 4.3. Example 4.3, results



394 J. Rang and L. Angermann

Example 4.3. We consider the Navier-Stokes equations (4.2) with Dirichlet boundary
conditions on the whole boundary and with the solution

u1(t, x, y) = t3y2,

u2(t, x, y) = exp(−50t)x,

p(t, x, y) = (10 + t) exp(−t)(x + y − 1).

The computations were carried out with Re = 1000, a spatial grid consisting of squares
of edge length h = 1/32, and variable time step sizes. This gives 8 450 velocity d.o.f. and
3 072 pressure d.o.f. for the Q2/P disc

1 finite element discretization.
All methods gave good results. The differences between the fourth order method RO-

DASP and the other third order methods is much smaller than in the previous example.
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