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FUNCTIONAL MOVEMENTS 
IN DENDRITIC STRUCTURES 

G. T. WHYBURN 

Charlottesville 

1. Introduction. A study will be made of the action of a function from a topo­
logical space X into itself which is influenced and to a considerable extent controlled 
by the structure of the space in so far as it is dendritic in character or dendritic 
relative to its cyclic elements. Continuity restrictions on the function are minimal 
and are related to peripheral continuity and connectivity requirements in the main. 
Invariant and nearly invariant cyclic elements will be identified when the space 
is a Peano continuum, thus giving nearly fixed points in the case of a dendrite; and 
this is done with very limited continuity restrictions on the function. 

2. Inductive Properties. This term is used here in the sense as usually employed 
in connection with the Brouwer Reduction Theorem. 

Theorem 2.1. In a compact metric space X for any property P, the property Sp 

of being the topological limit of a sequence of compact sets each having property P 
is an inductive property. 

For let Ax => A2 -̂  A3 => ... be a monotone decreasing sequence of compact 
sets in X each having property Sp. We have to show that A = (\An also has Sp. 

To that end, for each n let [A1^ be a sequence of compact sets converging to Any 

where each An
k has property P. Clearly we may suppose these sequences chosen so that 

for each n the sets An
k all lie inside the 1/n-sphere Vljn(An) about An for all k = 1,2,... 

and each also meets V1]n(x) for every xe An. It is then easy to show that the diagonal 
sequence [v4"] converges to the intersection set A of the sets An. 

Theorem 2.2. If P is any finite intersection property, then in a compact metric 
space X the property Tp of being the intersection of a monotone decreasing sequence 
of compact sets each having property P is inductive. 

That P is a finite intersection property means that the intersection of any two 
sets having property P is either empty or has property P. To prove that Tp is inductive, 
let Ax => A2 => -43 => ... be a sequence of non-empty compact sets in X each having 
property Tp and let A = (\An. We have to show that A is the intersection of a mono­
tone decreasing sequence of sets having property P. 
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To that end again for each n we take a sequence A\ •=> A2 => An
3 => ... of sets 

with intersection An and each of which has property P. Further we may take these 
sequences such that, for each n, A\ (and thus Aty lies in the 1/n-sphere about An. 
Then if we define 

B, = A\,B2 = A\A2
2,B3 = Al-Al-Ai... 

it is apparent that Bx => B2 z> B3 =D ... and that f)Bn = A. Also since P is a finite 
intersection property, each of the sets Bn has property P. Thus B has Tp. 

3. Inward Moving yl-sets. A non-empty closed subset A of a connected space X 
is an Aset provided X — A is the union of a collection of open sets each of which 
has a single point of A as its boundary. In case X is locally connected, this is equiv­
alent to saying that each component of X — A has a single point of A as its boundary. 

It is known [6] that in any connected space X the intersection of any two AL-sets 
is either empty or an Ai-set. In case X is also locally connected and Hausdorff, the 
same holds for arbitrary collections of Ai-sets, i.e., the intersection is either empty 
or an Ai-set. Further, in a space which is connected and locally connected, every 
yl-set is not only itself connected and locally connected but it meets every connected 
subset of the space in a set which is either empty or connected. 

Now let / : X -> X be a function where X is connected and locally connected. 
An A-set A in X will be said to move inward under / provided that for each p e A, 
f(p) lies in no component of X — A having p as its boundary. Thus for each such 
p e A,f(p) c A + U, where U is the union of all components of X — A with bound­
ary points in A — p. 

Remark 3.1. In any connected space, any connected set N which meets each 
of two intersecting Asets Ax and A2 also meets their intersection. 

For let Q be an open set in X — At containing a point a2 of IV • A2 and having 
a single point q of At as its boundary. (If no such Q existed we would have IV • A2 c 
c= Ax). Then IV meets both Q and X — Q and thus contains q so that qeN • Av 

However A2 also must contain q. For if not, q lies in an open set R c X — A2 

whose boundary is a single point r of A2; and this is not possible because X — R 
would be connected and would meet both Q (in a2) and X — Q (in Ai • A2) without 
containing q. Thus qeN • At* A2. 

Theorem 3.2. If each of two intersecting Asets Ai and A2 in a connected 
and locally connected space X moves inward under a function f: X -+ X, so also 
does their intersection A. 

Proof. Suppose, on the contrary that for some component IV of X — Ai ' A2 

with boundary p in A we have f(p) e IV. Then neither IV • At nor IV * A2 can be empty 
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as otherwise IV would be in a component Q of, say X — Al9 bounded by p and 
f(p)eN c Q. Thus by the Remark 3.1 we have A7 • Ax • A2 ->*-• 0, which is absurd 
since IV c. X — Ax • A2. 

4. Stabilized Cyclic Elements. Now suppose the space X is a Peano continuum 
(i.e., a connected and locally connected compact metric space). A true 4-set of such 
a space is an y4-set which is either non-degenerate or else is a cut point or an end 
point of X. Since as just shown the property A of being an inward moving ^4-set 
is a finite intersection property, and since clearly the same holds for true _4-sets, 
by § 2 the property Ta of being the intersection of a monotone decreasing sequence 
of inward moving (true) Assets in X is inductive. Accordingly, by the Brouwer 
Reduction Theorem, any inward moving (true) 4-set in X contains a (true) 4-set 
which is irreducible relative to the property Ta of being such an intersection. In this 
connection note that any non-empty intersection of (true) A-sets is an (true) 4-set. 
Thus we have proved the first part of 

Theorem 4.1. Any inward moving A-set A in a Peano continuum X under 
a function f: X -> X contains a fixed point or a true A-set E irreducible relative 
to the property of being the intersection of a monotone decreasing sequence of 
inward moving true A-sets. Further, if E is non degenerate, it can have no cut point. 

To prove the last statement, let A^ => A2 => A3 => ... be a sequence of inward 
moving _4-sets with intersection E and suppose, contrary to our conclusion, that E 
has a cut point p. Since E is non degenerate, f(p) # p. Let H = Q + p, where Q 
is the component of X — p containing/(p). 

It is readily seen that H is an inward moving AL-set underf; and thus, by § 3, so also 
is H • An for every n. Since H • A1 => H • A2 => ... it follows that (\H -An = H- f)An = 
= H • E is an ^4-set having property Ta. This is impossible because H • E is a proper 
subset of E. Note: E cannot lie in H = Q + p because Q • E is connected. 

Now since X itself is an inward moving true A-set under any / : X -> X, we get 

Theorem 4.2. If X is a Peano continuum, then for each function f: X -* X 
there exists a cyclic element E of X such that for each 8 > 0 there is an inward 
moving A-set AE in X with E c AE cz VE(E). 

This results at once from Theorem 4.1 together with the facts (i) any non-
degenerate A-set in X with no cut point is a true cyclic element, and (ii) any single 
point of X which is contained in arbitrarily small true A-sets in X is either a cut 
point or an end point of X and thus is itself a (degenerate) cyclic element of X. 

Theorem 4.3. Let f: X -> X be any function where X is a Peano continuum. 
Either some true cyclic element E of X moves inward under f or else some cut point 
or end point p of X is the intersection of a monotone decreasing sequence of inward 
moving A-sets. 
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Proof. Suppose no true cyclic element moves inward. Let E = f)An where 
1 

A1 3 A2 =5 A3 =3 ... is a sequence of inward moving true _4-sets chosen so that E 
is irreducible relative to the property of being such an intersection. Then if E is not 
a cut point or an end point, it is a true cyclic element and thus it does not move 
inward. Hence for some p e E, f(p) lies in a component Q of X — E bounded by p. 
Then since, for each n, both Q + p and An move inward, so also does An -(Q -j- p) = 

CO 

= Bn. Clearly p = f)Bn. 

5. Connectedness Preserving Functions. 

Theorem 5.1. Suppose the function f:X-»X preserves connectedness, where 
X is a connected and locally connected space, and let A be any inward moving 
A-set in X. Then either some point of A is fixed under f or A • f(A) is non-dege­
nerate. 

Proof. Suppose no point of A is fixed. Take p e A. Let q = f(p) in casef(p) e A 
and q = d(Q) where Q is the component of X — A containing f(p) otherwise. Simil­
arly let r = f(q) or the boundary of the component R of X — A containing f(g) 
according asf(g) is or is not in A. Then in any casef(yl) contains q because iff(p) e Q, 
f(q) is not in Q andf(v4) is connected. Similarly f(A) must contain r. Finally r ^ q 
because, in the first case, no point of A is fixed and in the second, f(r) is not in R. 

Theorem 5.2. Let f: X->X preserve connectedness where X is a Peano conti­
nuum. Then either some inward moving true cyclic element of X meets its image 
in a non-degenerate set or some cut point or end point of X is the intersection 
of a monotone decreasing sequence of A-sets each moving inward and each meeting 
its image. 

This is a direct consequence of Theorems 5.1 and 4.3. In case f is continuous 
it is clear that any such cut point or end point would be fixed under f Thus we have 

Corollary 5.3. Under any mapping of a Peano continuum X into itself either 
some cut point or end point is fixed or else some inward moving true cyclic elements 
meet its image in a non-degenerate continuum [see ref. 7]. In particular, every 
dendrite has the fixed point property for mappings [1, 5]. 

The fixed point property for dendritics is also a direct consequence of 

Corollary 5.4. If f is any connectedness preserving function of a Peano continu­
um X into itself, then for each e > 0 some point of X moves a distance <A + s 
where A is the supremum of the diameters of the true cyclic elements of X. * 
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6. Functions with Certain Continuous Restrictions. For any connected space X 
and any pair of points a, b in X, K(a, b) denotes the set of all points of X each of which 
separates a and b in X and K(a, b) = a 4- b + K(a, b). It is known [6] that in case X 
is also locally connected and satisfies a weakened Hausdorff type axiom, then K(a, b) 
is always closed and compact. 

Theorem 6.1. Given f: X ~> X where X is a connected and locally connected 
Hausdorff space. If f\K(a,b) is continuous for each a, beX, any point q of X 
which lies in an "arbitrarily small" inward moving A-set is a fixed point. 

For suppose f(g) = r ^ q. Take a region R about r with R a X — q. Since 
f | K(q, r) is continuous, by hypothesis there exists an inward moving ,4-set A with 
q e A c X — R and such that 

f[A • K{q, r)]czR. 

Then the boundary point x of the component Q of X — A containing R belongs to 
A - K(q, r) but f(x) e Q. This contradicts the fact that A moves inward under f 

Theorem 6.2. Any function f:D~>Dofa dendrite into itself whose restriction 
to each simple arc in D is continuous has a fixed point. 

We recall that a dendrite is a Peano continuum containing no simple closed 
curve. It follows by Theorem 4.3 that some point q of D lies in an arbitrarily small 
inward moving v4-set in D. Thus by Theorem 6.1 any such point q must be fixed 
under f. 

Examples are easily constructed of mappings of a dendrite D into itself which 
have continuous restrictions on all arcs of D but which are not continuous. Thus Theo­
rem 6.2 is a substantial extension of the classical result that any dendrite has the fixed 
point property for (continuous) mappings. 

Now let X be a connected and locally connected Hausdorff space. For any AL-set 
A in X let r: X ~> A denote the unique retraction of X onto A obtained by mapping 
each x e A into itself and each x not in A into the boundary point of the component 
of X — A containing x. This function is continuous and is monotone in the sense 
that r-1(y) is connected for each YE A; and as such it is uniquely determined by these 
two properties. 

Remark 6.3. Iff: X -> X is any function, then for any inward moving A-set A 
in X, any point which is fixed under rf: A -> A is fixed under f. 

For if x is any point of A withf(x) # x, rf(x) is either f(x) or the boundary 
point of the component of X — A containing f(x). In either case rf(x) =?-- x, since A 
moves inward under f. 
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Definition. We will call a class #" of functions of a Peano continuum X into 
itself r-invariant provided that for each fe !F we have rf e 3F and rf\Ee^ for 
each monotone retraction r of X into a true cyclic element E of X. 

We note that the class of continuous functions and also the class of connectedness 
preserving functions is r-invariant, as is also the class of functions with continuous 
restrictions to sets K(a, b) in X and other classes to be identified later. 

Theorem 6.4. Let #" be an r-invariant class of functions of a Peano continuum 
X into itself. Suppose each true cyclic element E of X has the fixed point property 
relative to restrictions to E of functions fe 3F which map E into itself. Then any 
function f of 3F which is continuous on its restrictions to sets K(a, b) in X has a fixed 
point. 

This is a direct consequence of Theorems 4.3 and 6.1 together with Remark 6.3. 
For Theorems 4.3 and 6.1 give either a fixed cut point or end point or else an inward 
moving true cyclic element E. In the latter case, we have rf | E e 2F for the monotone 
retraction r of X onto E. Thus rf | E has a fixed point x; and by Remark 6.3 x is also 
fixed under f 

Corollary 6.5. The fixed point property for continuous functions is cyclicly 
extensible (and reducible) [ l ] , 

7. Connectivities on Dendrites. A function f: X -> Yis a connectivity provided 
its graph function g: X -> X x Y defined by 

g(x) = [xJ(x)]eX x Y 

preserves connectedness. Thus the graph F(f| C) of every restriction off to a con­
nected set C in X is a connected set. It is known [3, 4] that the n-cell has the fixed 
point property for connectivities for all n ^ 0. We proceed now to extend this result 
to dendrites with countably many end points. 

Definition. If f: D ~> D is a function where D is a dendrite, and a e D, then 
a point x e D is said to move toward a under f provided f(x) lies in the component 
of D — x which contains a. 

Theorem 7.1. Let f:D-+Dbea connectivity where D is a dendrite. If each 
of two points a and b of D moves toward the other under f, then uncountably many 
points on the arc ab of D move toward a and uncountably many toward b under f. 

Let ax be an interior point of the arc which the arcs ab and af(a) have in com­
mon and let U and Q be the components of D — at containing a and b respectively. 
Then Q => f(a) and 17 x Q is a neighbourhood of [-1,f(#)] in D x D. Since the 



G. T. WHYBURN 325 

graph F off | ab is a non-degenerate connected subset of D x D containing [a,f(a)], 
it follows that F. (17 x Q) must be uncountable. This means that [x,f(x)j e U x Q, 
i.e., f(x) e Q, for uncountably many x e abU. Any such x e ab moves toward b 
under f Similarly, uncountably many points of ab move toward a under f 

For any dendrite D let B(D) be the least subdendrite of D containing all branch 
points of D, setting B(D) = D in case D is an arc or a point. For any ordinal a 
set Da = Ba(D) = B(Da„t) if a — 1 exists, and Da - fj Dfi in case a is a limit ordinal. 

/i<a 

Now in case the end points of D are countable, we have Da+l # Da so long as Da 

has branch points. Accordingly, for a given dendrite D with countably many end 
points there exists a least a < (2 such that Da has no branch points and thus is an 
arc or a single point. We set a = a(D) and call this the branching order of D. 

Now let f: D' -•> D' be a connectivity where D' is a dendrite with countably 
many end points. Let D be a subdendrite of D' which moves inward under f and has 
the least possible branching index a(D). 

(*) For each /? ^ ot(D), Dp = Bfi(D) moves inward under f. 

For suppose not. Let /? be the least ordinal so that Dp does not move inward. 
Then for some component Q' of D' — Dfi with boundary point b we havef(b) e Q'. 
Note that Q = Q' • D ^ 0. Then if a is an end point of D in Q, a and b move toward 
each other in D'. Thus by Theorem 7.1 there is a non-branch point bx of D' interior 
to the arc ab of D which moves toward a under f Then if K is the closure of the 
component of Q — bx containing a, K moves inward under f. Further since 
K c= Q <= D — D^, the branching index a(K) is </? _ a(D). This contradicts the 
minimal character of a(D) in D'. Thus (*) is proved. 

Now since (*) holds for /? = a = a(D), we have that Da moves inward under f. 
Since Da is a simple arc or a single point, it follows that some point of Da is fixed 
under f Thus we have proved 

Theorem 7.2. Any dendrite with countably many end points has the fixed 
point property for connectivities. 

Note 1. For a connectivity f: D -» D (D a dendrite), any point of D which 
moves inward is a fixed point. Also any simple arc ab in D which moves inward 
contains a fixed point of D. For if r: D -> ab is the monotone retraction, rf: ab -> ab 
is a connectivity and thus rf(p) = p for some p e ab. However rf(p) is the boundary 
of the component of D — p containing f(p) whenf(p) is not in ab; and thus rf(p) 
can be p only in case f(p) e ab, in which case rf(p) = f(p) = p. 

No te 2. Theorem 7.2 includes the result that a dendrite with a reducible set 
of branch points has this same fixed point property. For if the branch points form 
a reducible set, the end points must be countable. To see this note that if the set H 
of end points is uncountable, it contains a perfect set P; and since every end point 
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which is a limit point of end points is also a limit point of branch points, it follows 

that the first derived set (and thus every derived set) of the set of branch points 

contains the set P. 

N o t e 3. Every continuum of cut points of any connected separable metric 

space is a dendrite with countably many end points. 

8. Partially Continuous Function Types. A function / : X -> Y is peripherally 

continuous at x e X provided that if U and V are open sets about x and f(x) respecti­

vely, there exists an open set W with x e W a U and f(dW) cz V, where 51V is the 

boundary of W. It is known [2, 8] that on many domain spaces X, including the 

ri-eells for n > 1, the peripherally continuous functions coincide with the connec­

tivities. However this is not the case on the 1-cell and other dendritic type structures. 

Here we consider briefly the following classes of functions: 

(a) Connectedness preserving. 

(b) Connectivities. 

(c) Peripherally continuous functions. 

It is clear that all three of these types are hereditary in that any restriction of any 

one of them to a sub-domain is a function of the same type. Also it is easily seen 

that each of these classes is r-invariant in the sense described in § 6. Thus the fixed 

point Theorem 6.4 applies to each of these classes. 

Now let X be a Peano continuum. If/: X -» Yis a function where Y is a comple­

tely normal space, as noted above if/ is of type (a), (b) or (c) on X the same holds 

in particular for /1 E where E is any true cyclic element of X. Thus we have cyclic 

redueibility of the properties involved in defining these types. Cyclic extensibility 

of these properties does not always hold. However, under the additional condition 

that / have continuous restrictions to all sets K(a, b) in X, it is not difficult to see 

that cyclic extensibility holds in each case. That is, iff | E is of type (a), (b) or (c) 

for each true cyclic element E of X and iff | K(a, b) is continuous for each pair a, 

b e l , then f is of type (a), (b) or (c) respectively. 
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