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HOMOMORPHISMS AND ISOMORPHISMS 
OF SEMIGROUPS OF CONTINUOUS SELFMAPS 

K. D. MAGILL, JR. 

Buffalo — Leeds 

1. Introduction. It will be convenient to make the assumption that all topological 
spaces under consideration here are Hausdorff. Let X be any space and 7 a nonempty 
subspace of X. The family of all continuous selfmaps of X which also take Y into Y 
is a semigroup under composition and is denoted by S(X, Y). These semigroups 
were introduced in [4] and discussed further in [6]. When Y = X, we have the 
semigroup of all continuous selfmaps of X and we write S(X) in place of S(X, X). 
The problem we discuss here is that of determining when S(Z) is a homomorphic 
image of S(X, Y) and more specifically, when S(Z) and S(X, Y) are isomorphic. 

2. S*-Spaces and Permissible Pairs. Definition 2.1. A topological space X is an 
S*-space if for every closed subset F of X and every point peX — F, there exists 
a continuous selfmap f of X and a point qeX such that f(x) = q for xe F and 

f(p) * q-

Theorems 2 and 3 of [5] combine to give 

Proposition 2.2. The class of S*-spaces includes all completely regular spaces 
which contain an arc as well as all O-dimensional spaces (those spaces which have a 
basic of sets which are both open and closed). 

We refer to a subset H of a topological space X as a point-inverse if H = f~r(x) 
for some / e S(X) and some xeX. One easily verifies the following 

Proposition 2.3. A space is an S*-space if and only if the family of all point-
inverses is a basis for its closed subsets. 

Definition 2.4. A permissible pair (X, Y) is a space X together with a subspace 
Y such that the following conditions are satisfied: 

(2.4.1) For every closed subset F of X and every point p eX — F, there exists 

a function fe S(X, Y) and a point qe Y such that f(x) = q for xe F and 

f(p) * q-

(2.4.2) For every quadruple p, q, r, s of point of Y with p it q, there exists a con­
tinuous function f in S(X, Y) such that f(p) = r and f(q) = s. 
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The next result is a straightforward consequence of condition (2.4.1). 

Proposition 2.5. Let (X, Y) be a permissible pair. Then {/ -1(y) : / e S(X, Y), 
y e Y} is a basis for the closed subsets of X. 

The following two results show that permissible pairs are fairly numerous. 

Proposition 2.6. / / X is any completely regular space and Y is any arcwise 
connected subspace containing more than one point, then the pair (X, Y) is per­
missible. 

Proposition 2.7. If X is O-dimensional and Y is any subspace with more than 
one point, then the pair (X, Y) is permissible. 

To prove Propositions 2.6 and 2.7 it is sufficient to show that for every closed 
subset F of X, p e X — F and r, s eY, there exists a function / e S(X, Y) such that 
f(p) = r andf(x) = s for x e F. In the case of Proposition 2.6, there exists a homeo-
morphism h from the closed unit interval I into Y such that h(0) = r and h(i) = s. 
By complete regularity, there exists a continuous function k from X into J such that 
k(p) = 0 and k(x) = 1 for x e F. We can then take / to be h o k. As for Proposition 
2.7, there exists a set H which is both open and closed such that peH c X — F. 
We get the desired function in this case by defining/(x) = r for x e H and/(x) = s 
for xeX - H. 

3. Homomorphisms and Isomorphisms. We now address ourselves to the 
problem of determining when S(Z) is a homomorphic image of S(X, Y) where Z 
is an S*-space and (X, Y) is a permissible pair. The next result has by now appeared 
in [6, p. 137] as Theorem (4.1) and since its proof is somewhat lengthy, it will not 
be given here. This result reduces the previous problem to that of determining when Y 
is homeomorphic to Z and S-embedded in X. This leads us to 

Definition 3.1. A subspace Y of X is S-embedded in X if every continuous 
self map of Yean be extended to a continuous self map of X. 

Theorem 3.2. Let (X, Y) be a permissible pair and let Z be an S*-space. Then 

S(Z) is a homomorphic image of S(X, Y) if and only if Z consists of one point or Z 

is homeomorphic to Y and Yis S-embedded in X. 

As for isomorphisms, we have 

Theorem 3.3. Let (X, Y) be a permissible pair and let Z be an S*-space. Then 
S(X, Y) and S(Z) are isomorphic if and only if Z is homeomorphic to Y and Y is 
a dense S-embedded subspace of X. 
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Proof. First suppose that h is a homeomorphism from Z onto Y and that Y 
is a dense S-embedded subspace of X. The mapping which takes fe S(Z) into b / o 
o h~l e S(Y) is an isomorphism from S(Z) onto S(Y). Furthermore, each g e S(Y) 
has a unique extension to a function (p(g) e S(X, Y). It is a straightforward matter 
to check that q> is an isomorphism from S(Y) onto S(X, Y) and it follows that S(X, Y) 
and S(Z) are isomorphic. 

On the other hand, let cp be an isomorphism from S(X, Y) onto S(Z). We first 
dispense of the case where Z consists of one point. In this case, S(Z) has only one 
element and hence S(X, Y) has only one element. Thus, X = Y consists of one point 
and it follows that Z is homeomorphic to Y and that yis a dense S-embedded subset 
of X. Now consider the case where Z consists of more than one point. It follows 
from the previous theorem 3.2 that Z is homeomorphic to yand yis S-embedded in X. 
But equally important, an analysis of the proof (see [6, p. 137]) of that result allows 
us to conclude the existence of a homeomorphism h from Z onto ysuch that cp(f) = 
= h o/o h~l for e a c h / e S(X, Y). Using this fact, we show by contradiction that Y 
is dense in X. Suppose p e X — cl Y. Then by condition (2.4.1), there exists a function 
/ in S(X, Y) and a point qeY such that f(x) = q for x e cl Y and f(p) ^ q. The 
functions / and <g> (the constant function which maps all points of X into q) are 
distinct but both cp(f) and <K#> a r e equal to <h(q)>. This contradicts the fact that <p 
is an isomorphism. Hence yis dense in X and the proof is complete. 

4. S-Embedded Subset. The two results of the previous section state that in 
order to determine whether or not S(Z) is a homomorphic or an isomorphic image 
of S(X, Y), one must be able to determine, among other things, if Y is S-embedded 
in X. In this section we investigate S-embeddedness a bit further. The first result 
is easily verified and its proof is omitted. 

Proposition 4.1. Every retract of a space is S-embedded in that space. 

The statements of the next two results involve realcompact spaces, the Hewitt 
realcompactification vX of a completely regular space X and also its Stone-Cech 
compactification pX. One may consult [3] for a detailed investigation of these con­
cepts. 

Proposition 4.2. Let X be a compact space and let Y be a subspace which 
contains an arc. Then Y is a dense S-embedded subspace of X if and only if X 
is the Stone-Cech compactification of Y. 

Proposition 4.3. Let X be a realcompact space and suppose Y is a subspace 
of X which contains a copy of the real line which is closed in X. Then Y is a dense 
S-embedded subspace of X if and only if X is the Hewitt realcompactification of Y. 

The proofs of the last two results are similar and because of this, we give the 
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details only in the second case. First of all, if X = vY, it follows from well known 
properties of this space that Y is dense in X and that every continuous function 
mapping yinto yean be continuously extended to a function which maps X into X. 

Suppose, on the other hand, that Y is dense in X and S-embedded as well. 
We must show that if / is any continuous real-valued function on Y, then / can 
be continuously extended to a real-valued function on X. By hypothesis, there exists 
a homeomorphism k from the real line R onto a subset H of Y which is closed in X. 
Then ko/is a continuous mapping from yinto yand since yis S-embedded inX, 
k o / has a continuous extension g which maps X into X. Now, since H is closed 
in X, we have 

g[X\ = g{c\x y] c clx g\Y\ = cl* k o/[Y] cz H . 

That is, the range of g is a subset of H. It follows that k~l o g is a continuous extension 
of/ which maps X into JR. Thus X must be the Hewitt realcompactification of Y. 

In Proposition 4.3, one cannot hope to replace the requirement that the copy 
of R be closed in X with the weaker requirement that the copy of R need only be 
closed in Y. For if we take Y = R, Y certainly contains a copy of JR which is closed 
in y and furthermore, Y is a dense S-embedded subspace of f}Y9 its Stone-Cech 
compactification. However, the Hewitt realcompactification in this particular case 
is y itself and not /3Y 

An application of a very nice result due to Dugundji [2] provides us with other 
examples of S-embedded subspaces. First we state Dugundji's theorem. 

Theorem 4.4 (Dugundji). If f is any continuous function mapping a closed 
subset A of a metric space X into a locally convex topological linear space L, 
then there exists a continuous extension off which maps X into the convex hull 
off [A]. 

The following fact is an immediate consequence of Dugundji's theorem. 

Proposition 4.5. Let X be any convex subset of a normed linear space. Then 
any closed (in the topological sense) subset of X is S-embedded in X. 

However, being closed and being S-embedded are not equivalent. DeGroot [1] 
has proven the existence of 2C one-dimensional connected, locally connected subspaces 
of the Euclidean plane E2 with the very interesting property that for any two such 
spaces, only constant functions map one continuously into the other and the only 
continuous selfmaps of any such space are the constant functions and the identity 
function. Let Z be any such space and let Y = h[Z] where h is any homeomorphism 
from E2 onto the interior of the closed unit disk X in E2. Since the only continuous 
selfmaps of Y are the constant functions and the identity function, it is immediate 
that yis S-embedded in X which is a convex subset of a normed linear space. However, 
yis not a closed subset of X for an assumption to the contrary leads one to the con-
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elusion that Y is compact, connected, locally connected and metric, i.e., a Peano 
space with more than one point. But these spaces have many continuous selfmaps 
in addition to the constant maps and the identity map. Consequently, Y cannot 
be closed in X. 

For convex subsets of a convex set X, however, being closed and being S-
embedded are equivalent. We state this formally as 

Proposition 4.6. Let X be a convex subset of a normed linear space and let Y 
be a convex subset of X. Then Y is S-embedded in X9 if and only if Y is closed 
(in the topological sense) in X. 

Proof. If Yis closed, it follows immediately from Proposition 4.5 that Yis S-
embedded in X. Suppose Y is not closed. Since X is a first countable space, there 
exists a point p e l — Y and a sequence [xn}n=1 of distinct points of Ywhich con­
verges to p. Let A = {x„} °̂=i and define a function / mapping A into A by f(x2n) = 
= x2n and/(x 2«-i) = *i- The function/is continuous since A is discrete. Further­
more, A is a closed subset of Yand, hence, by Dugundji's theorem,/has a continuous 
extension to a function g which maps Yinto Y. However, g cannot possibly be extend­
ed continuously over X since lim xn = p while limf(xn) does not exist. 

Now we combine the two results of section 3 with these last several results 
on S-embeddedness. In all the following statements, (X, Y) is a permissible pair 
and Z is an S*-space. 

Theorem 4.7. Suppose X is compact and Y contains an arc. Then S(X9 Y) 
is isomorphic to S(Z) if and only if Z is homeomorphic to Y and X is the Stone-
Cech compactification of Y 

Theorem 4.8. Suppose X is realcompact and Y contains a copy of the real 
line which is closed in X. Then S(X9 Y) is isomorphic to S(Z) if and only if Z is 
homeomorphic to Y and X is the Hewitt real compactification of Y. 

Theorem 4.9. Suppose X is a convex subset of a normed linear space and Y 
is a convex subset of X. Then S(Z) is a homomorphic image of S(X9 Y) if and only 
if Z consists of one point or Z is homeomorphic to Yand Yis a closed subset of X. 

Theorems 4.7 and 4.8 follow from Theorem 3.3 combined respectively with 
Propositions 4.2 and 4.3. Theorem 4.9 is a consequence of Theorem 3.2 and Pro­
position 4.6. A result which is similar to Theorem 4.7 appears in [4] but the techniques 
which were used there are not the same as those used here and different assumptions 
were made on the spaces involved. We remark in closing that in Theorem 4.9, if Y 
has more than one point, Proposition 2.6 implies that (X, Y) is permissible. For X 
is certainly completely regular and Y is arcwise connected since it is a convex subset 
of X. Theorem 4.9 now appears in [6, p. 140] as Corollary (4.3). 
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