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WEAKLY HAUSDORFF SPACES AND THE CARDINALITY 
OF TOPOLOGICAL SPACES 

T. S O U N D A R A R A J A N 

Madurai 

Introduction. A topological space (X, ST) is called a weakly Hausdorff space 
if each element of X is an intersection of regularly closed sets. A weakly Hausdorff 
space can also be defined as one in which each element is an intersection of regularly 
open sets1). The class of weakly Hausdorff spaces includes properly the Hausdorff 
spaces, the T\ semi-regular spaces and the T\ n2 spaces of [8]. First we prove that 
if (X, 2T) is a weakly Hausdorff space and has a dense subset of cardinal 9 then 
|K| ^ 22°. We next consider products of weakly Hausdorff spaces. We then derive 
that a locally compact Hausdorff group G has a dense subset of cardinal ^ m (m^K 0 ) 
if and only if |G| ^ 22 and G is a set union of K compact sets where K ^ m. We also 
make some comparisons of this separation axiom with some of the other separation 
axioms. We conclude with a conjecture. The author expresses his best thanks to 
Professor M. Venkataraman for his encouragement and guidance in the preparation 
of this paper. 

§ 1. In this section we proceed to the results on the cardinality of topological 
spaces. 

Proposition 1.1. Let (X, ST) be a topological space and A be a subset of X. 
Then the following are equivalent: 

1. A is regularly closed (A = Int A = A0). 
2. A = cl (A n D) for each dense subset D of X. 
3. A = cl (A n D) for each dense open subset D of X. 
4. A = cl (A n D)for each dense set D such that \D\ = d where d is the density 

character of X. 
5. A = cl(,40 n D) for each dense subset D of X. 

Proof. Left to the reader. 

Theorem 1.2. Let (X, 2T) be a weakly Hausdorff space having a dense subset D 
of cardinal 9. Then \X\ = 22\ 

*) Regularly closed sets are also called closed domains and regularly open sets are called 
open domains, cf. [8]. 
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Proof. By Proposition 1.1 if A and B are two regularly closed sets and A # B 
then we have A n D ^ B n D. Hence the cardinality of the set of regularly closed 
sets cannot exceed 2°. Since X is weakly Hausdorff, each element x of X is the inter­
section of all the regularly closed sets containing x. Hence to each element x of X 
we can associate the subfamily Vx of all regularly closed sets containing x. If x ^ y 
we have Vx ^ Vr The family {Vx}xeX has cardinality ^2 2° and hence it follows that 
\X\ = 22°. 

Remark 1.3. Theorem 1.2 generalizes a result of Pospisil2). The proof above 
is similar to showing that the weight of a semi-regular space does not exceed 2d where 
d is the density character. 

Proposition 1.4. Let Xa, a el be a family of non-void topological spaces. 
Then the product space fJXa is weakly Hausdorff if and only if each Xa is a weakly 
Hausdorff space. 

Proof. Suppose first that each Xa is weakly Hausdorff. Let x = (xa) be any 
element of YlXa- Let y = (ya) be any element of J~]Ka such that y =£ x. Then there is 
a n a e / such that xa # ya- Let Pa be the projection map of J~]Xa onto Xa. 

Since xa9 ya e Xa and xa # ya there is a regularly closed set Aa in Xa such that 
xa e Aa and ya $ Aa. Now Aa = cl Aa where Aa is the interior of Aa in Xa. Now 
Pal(Aa) is an open set in f]Ka andcl P"1^) = P~1(Aa). (This follows for instance 
from the well known proposition that if Ba c Xa then cl (]jBa) = f|(cl JBa)). Thus 
Pa"

1(Aa) is a regularly closed set in ]JXa. Also x e P~ x(Aa) and y $ P~ *(AQ. It follows 
that x is the intersection of all regularly closed sets containing it. Thus f|Ka is weakly 
Hausdorff. 

Suppose now that \\Xa is weakly Hausdorff. Consider any Xa. Let xa e Xa 

be any element. Let ya e Xa and ya # xa. For each a ^ a choose a zfl e Zfl. Now 
consider the elements x any y in Y\Xa defined as follows: x — (xa) such that xa = za 

if a ^ a and the a-th coordinate of x is xa9 y = (yfl) such that ya = zaif a ^ a and 
the a-th coordinate of y is ya. Now x # j and |~IKfl is weakly Hausdorff. So there 
is a regular open set O such that x e 0 and j ^ O. Since O is open there is a basic 
open set Vsuch that xeV^ O. So now y $ Int cl Fsince Int cl V c O. Now V = Y\Wa 

where each Wa is open in Xa and except for a finite number of indices Wa = Xa itself. 
Since xa = ya for all a # a and y ^ V, we must have that JVa # Xa. Let PVa = 
= Int cl Wa in Xa. Then V' = \[Za where for all a ^ a, Za = TVfl and Za = W'a is an 
open set such that V 3 V and F _= O and y # V. So ya ^ KFJ. But xa e Wa. Hence 
xa belongs to a regular open set Wa such that ya<£ Wa. So our assertion follows. 

Theorem 1.5. Let (X, 3~) be a space having a dense subset H of cardinal 6 
( = ^o)- Then X2° also has a dense subset of cardinal 9. 

2) Cf. B. Pospisil, Casopis pro pest. mat. a fys. 67 (1937—8), 89—96. 
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Proof. The assertion is, in fact, proved in [2], 

Theorem 1.6,3) For each ae A let Xa be a weakly Hausdorff space with at 
least two elements. Let X = Y\Xa with the product topology. If X has a dense 

aeA 

subset of cardinal = 0 with 0 _ X0 then each Xa has a dense subset of cardinal 

= 0 and \A\ = 2°. 

Proof. Suppose X has a dense subset of cardinal = # . Since for each a, Xa 

is a continuous image of X, Xa also has a dense subset of cardinal = 0 . If |.4| > 2e 

then IXI > 22°. But by Theorems 1.4 and 1.2, X is weakly Hausdorff and |X| S 22°. 
Hence it follows \A\ = 2\ 

Theorem 1.7.3)4) Let G be an infinite locally compact Hausdorff topological 

group. Then G has a dense subset of cardinal = m (m = K0) if and only if (l) \G\ ^ 
:_ 22 and (2) G is a set union of X compact sets where X ^ m. 

Proof. Suppose G has a dense subset of cardinal ;_m, then by Theorem 1.2 
|G| S 22 . Since G is a locally compact group, G contains an open subgroup H such 
that H => G0, the connected component at the identity of G, and HjG0 is compact. 
Since GjH will also have a dense subset of cardinal _m, we get that |G/H| ^ m. 
Now since H/G0 is compact we have that there exists a compact normal subgroup Ht 

of H such that H/H1 is separable metric [4] and locally compact. Now HjHx is 
cr-compact, for if Vis a compact symmetric neighbourhood of the identity in H/Ht 

then \JVn is an open subgroup in HjHx which is cr-compact and which has a countable 
index in HIH±. Hence HjHt is cr-compact. If H/Ht = \JBn each Bn compact in HjH1 

then, since H± is compact, the preimage of Bn is compact in H [7] and so we get H 
is cr-compact. Now G is a union of at most m cosets of H each of which is cr-compact. 
Hence (2) follows. 

Suppose (l) and (2) are satisfied. As above G has an open subgroup H such that 
H ZD G0, the connected component at the identity e of G and HjG0 is compact. 
Then H has a compact invariant subgroup Ht such that H/H1 is separable metric [4]. 
Now consider the compact group Hu \Hx \ ^ 22 . If the identity element is of character 
0 then \HX\ = 2e [3]. Hence we have that the character at the identity is ^ 2 m , but 
any compact group is dyadic and we can assume that it is a continuous image of Dn, 
D = (0, 1}, D discrete, and n is the weight of G. Also the weight of a dyadic compact 
space is the upper bound of all its point characters taken over any dense set (Efimov). 
Hence n ^ 2m. By Theorem 1.6, D2 and hence Dn has a dense subset of cardinal ^ m . 

3) We are proving this with the assumption m > 2n implies 2m > 22 . This appears to be 
independent of the other axioms of set theory c.f. W. B. Easton: Powers of regular cardinals, 
dissertation, Princeton (1964). 

4) This result was derived in a conversation with M. Rajagopalan. 
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Hence Hx has a dense subset of cardinal _^m. Since HjHx is separable we get that H 
itself has a dense subset of cardinal = m. Since H is open and GjH is a union of at 
most m compact sets we get that the discrete space GjH is also a union of at most m 
compact sets. But any compact set of G/H is finite. Hence \G/H\ = m. Since H has 
a dense set of cardinal ^ m , we get that G, which is a union of at most m cosets of FT, 
also has a dense subset of cardinal _>n . m = m. This completes the proof. 

§ 2. In this section we consider properties of weakly Hausdorff spaces and their 
relation with some of the other separation axioms. As most of the proofs are straight­
forward we leave them to the reader. 

Proposition 2.1. Any Hausdorff space is weakly Hausdorff but not conversely. 

Proof. Example for the converse5): 

Let X = [0, 1] u [2, 3] u A where A is a countable set disjoint from [0,1] 
and [2, 3]. 

For each element of [0, 1) u (2, 3], the usual neighbourhoods constitute a basis 
at that point. For each xe A, {x} itself is a neighbourhood of x. A set B containing 1 
is a neighbourhood of 1 provided it contains some (s, 1], 0 < s < 1 and all but 
a finite number of elements of A. Similarly a set C containing 2 is a neighbourhood 
of 2 provided C contains some [2, ef), 2 < sf < 3 and all but a finite number of 
elements of A. This gives rise to a topology 9~ on X. ST is not Hausdorff since every 
neighbourhood of 1 intersects every neighbourhood of 2. But & is weakly Hausdorff. 

Remark 2.2. The example in the proposition 2.1 has the following further 
properties. 

1. (X, ST) is compact. 

2. (X, Zf) is semi-regular (i.e. has a base of regular open sets) and is a 7\-space. 

3. Sequences need not have unique limits. 

4. Compact sets are not necessarily closed. 

5. (X, &*) satisfies the first axiom of countability. 

6. The set of limit points of a net need not be regularly closed. 

Remark 2.3. Let X = [0, 1] u [2, 3 ] u i where now Al is an uncountable set; 
we define a topology / o n l a s follows: whenever x # 1, 2 a basis of neighbourhoods 
of x is defined as in Proposition 2.1. 

If x = 1 then a base of neighbourhoods consists of all sets of the form (e, 1] u B 
where 0 < s < 1 and B a A such that A — B is countable. Similarly when x = 2, 

5) This example is due to S. P. Franklin. 
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a base of neighbourhoods consists of all sets of the form [2, a') u C, where 2 < e' < 3 
and C a A such that A — C is countable. This (X, / ) has the following properties. 

1. (X, f) is weakly Hausdorff. 

2. Compact sets are closed in X. 

3. Any sequence converges to at most one element. 

4. (X, f) is semi-regular and Tx. 

5. (X, / ) is not Hausdorff. 

Remark 2.4. This shows that even under the properties (2) and (3), a weakly 
Hausdorff space need not be Hausdorff. 

Proposition 2.5. Any semi-regular Tx space is weakly Hausdorff. But a weakly 
Hausdorff space need not be semi-regular. 

Proof. Since there are Hausdorff non semi-regular spaces [8], p. 99, the second 
part of the proposition follows. 

Definition 2.6. A space is called a n2 space [8] if each open set is a union 
of regularly closed sets. 

Proposition 2.7. Any n2 and Tx space is weakly Hausdorff but the converse 
is not true. 

Proof. Since there are Hausdorff spaces which are not n2 [8], p. 99, the second 
part of the assertion follows. 

Proposition 2.8. There is a Tx space in which compact sets are closed and any 
sequence converges to at most one point but which is not weakly Hausdorff. 

Proof. Let X be an uncountable set and let &~ = 0 u {O c X [ 0' is countable}. 

Proposition 2.9. Let (K, 3T) be a weakly Hausdorff space. Then any open 
subset is again weakly Hausdorff. A regularly closed subset need not be weakly 
Hausdorff. 

Proof. For the second part consider the subset A u { l , 2 } in the example 
in Proposition 2.1. 

Open Questions. 1. Is a compact weakly Hausdorff space semi-regular or n27 

2. Characterize weakly Hausdorff spaces by convergence of nets. 

3. The class of weakly Hausdorff spaces is a class of spaces between the classes 
of Tt and T2 spaces and for which Theorem 1.2, Proposition 1.4 and Theorem 1.6 ho'd. 
Here we have two questions: 
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Question 3.1. Is this a maximal class with the above properties? 

Question 3.2. Is this the largest class with the above properties? 
We conjecture that the answer is affirmative for both the questions 3.1 and 3.2 

mentioned here. 
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