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ALGEBRAS OF CONTINUOUS FUNCTIONS IN UNIVERSAL ALGEBRA 

EVELYN NELSON 

Hamilton, Ontario 

This talk was a report on joint work with B. Banaschewski and 

represents part of a forthcoming paper on Boolean powers [1]. 

The algebras of continuous functions to which the title alludes 

are defined as followsi for a topological space X and an algebra A, 

C(X,A) is the algebra of all functions X -+ A, continuous with respect 

to the discrete topology on A, with pointwise defined operations, and 

E(X,A) = D(X,A)/~ where D(X,A) is the algebra of functions X •> A 

continuous on some dense open subset of X, and ~ is the congruence 

which identifies two functions whenever they coincide on some dense 

open set. 

These algebras, for suitable Boolean spaces X, are (isomorphic 

with) the Boolean powers, bounded and unbounded, of the algebra A, 

introduced by A.L. Foster [2]. 

It is clear that, for any X, the algebra C(X,A) is a subalgebra 

of a power of A; moreover a subalgebra S of a power A is of the form 

C(X,A) for some Boolean space X iff S contains the constant maps, each 

u є s has finite image and Q(r,s,u,v) є S whenever r,s,u,v є S where 

Q(r,s,u,v)(i) = u(i) if r(i) = s(i) and = v(i) otherwise. The situ-

ation for E(X,A) is somewhat different: for any space X, E(X,A) is 

the direct limit of the C(U,A) for the dense open U £ X; E(X,A) in 

general need not be embeddable in a power of A, and decent topological 

criteria which ensure that E(X,A) is so embeddable are not known. (Of 

course for the trivial case of a discrete space I, E(I,A) =- E(ЗI,A)=-

A
1
) . 

Each algebra A of type т determines a (contravariant) functor 

C(-,A) from the category TOP of topological spaces and continuous maps 

to the category Alg(т) of all algebras of type т and their homomorphisms; 

for a continuous f: X -> Y, C(f,A): C(Y,A) -> C(X,A) is given by u^~»uf. 

Moreover, the restrictions of such functors to the category BooS of 

Boolean spaces and their homomorphisms can be characterized in purely 

categorical terms: a contravariant functor F: BooS •> Alg(т) is natu-

rally equivalent to C(-,A) for some A iff F copreserves finite copro-

ducts and projective limits, i.e., takes finite coproducts to the 

corresponding products, and projective limits to the corresponding 

direct limits. An application, for general linear groups, is that 
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GL(n,B) - C(fiB, GL(n,2)) for each Boolean ring B, Q.B being the Stone 

space of B, 2 the two-element Boolean ring. An analogous statement holds 

for rings of n * n matrices over Boolean rings. 

For any space X, there is a complete lattice embedding from 

<f>6̂.X, the filter lattice of the Boolean algebra of regular open sub­

sets of X, toCE(X,A), the congruence lattice of E(X,A), given as 

follows: each filter f in &JX determines a congruence Oy on D(X,A); 

(u,v) e do if,f u|u n V = v|u n V for some dense open U c x and some 

V e f . Since 0^ ^ ~, this in turn determines a congruence on E(X,A). 

It turns out that this embedding <S> &X •> t;E(X,A) is an isomorphism 

for all spaces X iff it is an isomorphism for spaces X of the form 31 

for I discrete. Algebras A with $ &X =- £E(X,A) for all X include all 

fields and all simple finite lattices. 

The quotient E~ (X,A) = D(X,A)/0rv is called a Boolean filter 

.power of A. 

Any two filters 9 in 6-lX and Of in SLY determine a filter 

?*0J in Sl(X x Y) : S e ? * Oj iff lTl{x c X | IT{y e Y | (x,y) e S} 

e OJ } e f , where I and r denote interior and closure respectively. 
Y X X*Y Now the familiar isomorphism (A ) -*- A for sets X and Y given by 

f~*<>f, f(x,y) = f(x)(y), restricts to an embedding D(X,D(Y,A)) + 

D(XXY,A) for any spaces X and Y; this in turn factors to produce an 

embedding E ̂  (X, E^(Y,A)) + % £*a (X x Y,A) . It is not difficult to 

see that the latter is an isomorphism for all ? and Of whenever the 

induced embedding E(X,E(Y,A)) •> E(X x Y,A) is an isomorphism. For 

discrete Y, the latter is equivalent with &X satisfying certain 

infinite distributivity laws; however, criteria for this to hold for 

more general Y are not known. 

For any A, the algebras E ̂  (X,A) for ultrafilters UL in Six 

coincide, up to isomorphism, with the Boolean ultrapowers of A con­

structed by Mansfield [3] via Boolean-valued models. The above 

topological approach yields an alternative proof of Mansfield's result 

that two algebras are elementarily equivalent, i.e., satisfy the same 

first order sentences, iff they have isomorphic Boolean ultrapowers. 
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