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SOME PROBLEMS OF CONVERGENCE IN COUNTABLY MODULARED SPACES
J MUSIELAK AND A.WASZAK
Poznan

1. Let Sixx-—a[o,a,] , i=1,2,..., be a sequence of pseudomo-
dulars in s real linear space X, i.e. §;(0)=0, §;(x)= §y(x),
Qi(Lx+py) < S3(+ §3(¥) for £, >0, L+p=1, x,yeX, and
let §;(x)=0 for all i imply x=0. By meens of this sequence, one may
define the following modulars in X :

)
1. §1(x)
R e e e

(aee [1],[6]). Let T be any of the symbols &, € , §, - Then
I§ -{x €X : §‘(xx)—9 0 as 190} is the modular space generated by
the modular §, l|x|]§. = inf {u >0 §(x/u) < a} is an F-norm in
X5 , and llxh - x||§ —>0 ssn—>o with 1,x €Xz is equivalent to
the condition §(’/\.(xn - x))——> 0 asn—>® for every 1>0. If
there exists & 1 >0 such that S(A(x, - X))—>0 as n-—>c0, then
we shall write xn—§—>x (see [5]). Obviously, |x, - xl|§- —>0 implies
!n—ﬁex .

In this paper we shall establish some conditions in  order
that .convergence in the norm "‘"8 be equivalent to convergence in
the norm "'"g’o » in two important spaces. Also, some completeness
problems will be solved.

2. In the first of the above mentioned cases, let /u. be a
finite measure in a G-algebra Z of subsets of an abstract, non-
empty set £, and let X be the set of S -measurable real functions
on S2 with equality ,u-almost everywhere. Let (‘ﬁ) be a sequence of_
(f’—functians see [B]), and let

§1(®) -S‘ﬂ(l*“)l) -
S

The following condition will be used :



320
(T) there exist posjtive constants k,c,u, >0 and an index i such
that LFi(cu) < k‘Fio(n) for all m>u, and all i »>i .
Theorem 1. If (‘-Fi) are equicontinuous at 0, (7) holds and
% €L, then x; %50 implies x, %50 end lxyllo—>0  implies

I llg >0 -

°
Proof. From 2,1 in [1] follows x, € Xg . Moreover, (¥) may
[}

be written in the form: there exist a positive constant ¢ and an in-

dex i such that for every u’ >0 there is a k’ >0 such that ‘ﬁ(n)

<2, (w/e) for all u > u’ and all 1 >4
o

Hence

(!) S’i(lxn) <rx 910(%,3) + (ﬁ(u')/u(ﬂ)

for 1% }10 and A> 0 . Choosing arbitrary & > 0 , we may take u’>0
such that (ﬁ(u’)/&(ﬂ)< -156, , and & constant k? > O coresponding to

.

o

this u’. Now, let us suppose that :h—‘g—"o, 1.6, Q(AX,)—>0 for a
A >0 . This implies §i(;\,'xn)—;o as n —>o for all i. In parti-
cular, g’io(x’xn)néo 88 n > . Choosing 1 =c-A! We may find n
such that

pY &
91.0(3:11) < -—5;;- for n>no .

Applying the inequality (z) we get 91(2,1!‘) <E forn>n, and
121,
n»i and 1<1 . Teking A = min (2, A’), we obtain @; (A X, )<
& for n rmax (no,ii) and all i. Comnsequently, !n~‘99—>0 .  Sup-

. Now, we choose i in such a manner that Q;(2'x )<¢ for

posing "xn”g —>0 , we obtain "1’1“&90 in a similar way.

Theorem 2. We suppose the measure M to be atomless and (‘fi)to
be equicontinuous at 0. Then
1° if there exists 8 1> O such that for every i there are numbers
/31 » 1Py >0 for which ‘f’i(l u)Sﬂi‘-ﬁ:(u) for all u > 1%, end
k>, mait melp x, 550 imply x, -2>0, then there
holdse (7),
2% if for every A DO and every i there are numbers Py ’l/oii > 0 such
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that (f;(Au) < B;fy(w) for all u >}, end all k >4, and 1t

IﬂexS’O . uxnus_;o implies nxn||g°->o , then there holds (7).

Proof. Let us suppose (T) does not hold, then there exists
an increasing sequence (:Ln) of indices and an increasing sequence (un)
of positive numbers, u, —>® , (Fn(un) >1 for n=1,2,..., such that

('th (2"!1 “n) > ?Lfn(nh) for n=1,2,...

(compare [1]). We choose measurable, pairwise disjoint sets AneQ
such that (Pn("n) Mm(n,) = 2B u(52) end we take

w, for I:GAn ’
xn(t)a{o for t¢An .
Then
Q%) = (A u ) ua) < Fy(Rru, )u(R)>0
as L—>0 , uniformly with respect to i. Hence g’o(lxn)s sgp ?1(1%)
—>0 as 1L-20, i.e. ’hEIS’o .

Now, under the assumptions of 1° , we obtain

9100 %,) = PRy Klhy) < By Falny) uliy)e B2
for a suitable A >0, n>31 and n so large that w, >1}1 .Hence
?1(15) —>0 as n—>m for all i . Consequently, rh—s—>0 . It is
easily seen that under the assumptions of 2° , we get H xh"S —> 0.
Now, we prove that xn—>o does not hold, all the more, also “ﬁ"
—>0 does not hold. Indeed, supposing %&M), there would exist
& L> 0. such that g’i(a,xn)—m a8 n —>o0o0 uniformly in i . In
particular, §1n(l X,)—>0 asn-—>® . On the other hand,

$1,(7 %) = By (7)) > 2 Faliy) i) 1 (52),

a contradiction.

Theorem 3. The gpace X is complete.
8
Proof. Let (,h) be a Cauchy sequence in 15 . Then
8

o
Z 91(1 (x, - x.)) —>0 as myn—>00 for every 1A > 0. Let us fix
i=1
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A. There exists an increasing sequence of indices (n,) such that

%1: gi(l(xn - 1_))(;&-“&(-;-2—) for m,nn,.

In particular,

i 531(1(5“1 B xnk)) <-.,%§_ (ﬁ(%r) . km1,2,000 .

i=1

Let us choose

henfres 2 g, @ - %,00) > ()]

then
5009 75 S o).

and so /M.(Ak)<2"k . Denoting A = ﬁ Loj Ay , we have /u(A)-O.
j=1 k=f

Hence for any t€ A’=S52\A there exist a j such that

2’(‘&(;’"'1““10) - ﬁk(t)‘)gcﬁ(}zr) for k>3 .

1
In particular, I’hkﬂ(t) - xnk(")| <1?" for k> J§ , and so

the series o
xno(t) +Z<xnk+1 ®) - ’hk(t))
k=1

is convergent. Denoting ite sum by x(t) we obtain x (t)—> x(t)
k

a.e. 1in G2 . By Patou lemma,

lzf S(‘ﬁ (;"lxnk(t) - x(t)l) %SJ%Z 31 (A'(%k - xn.‘!))<

i=t Q
<% (z)

for every N and k=1,2,,.. . Taking N —>®», we obtain

g,(l(’hk- x))<;2f'cﬁ(1;§) for ka1,2,¢.. .

Moreover,
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gs(x(xm—ﬁlk)) <12'g('€1(§§) for m>mn, .

Hence

St - ) <EF(H)
Let us choose &£S>0 and A > 0 and let us take k so large that
i—g:—t—-(ﬁ (-;—E)<5 . We obtain S’B(%A,(xm - x)) <g for myny,
where k depends both on & and on %4 . Let us remark that the fun-
ction x is independent of A . Indeed, 1let x* , x'* correspond to
two values A! , A?* >0, i.e.

gs (]é X (xy - x’)) <& for n yny’

and

i, (% X' - "”))<f/ for m znp
and let 0 <A <X’ . Then
o, (2 xe - =0) <8 (320 =)+ G (bartx, - w9) < 2
for m »max (n} , n}’) . Hence
S, (3 26 - =) =0

and consequently, x°(t) = x*’(t) a.e. This proves x to be indepen-

dent of A, and so X, —>X inXSa .
8

Let us still remark, that both spaces Xg and XS; are
o

complete in the respective norms lI*llg anda |l - Hg . In case of Xg
[e]
this follows from completenes of the Orlicz spaces L4, for i=1,2,..
i
(see €eZo [5]) Completeness of Xg, follows from that of XS’ and
o

from 1,4 in [1]. applying Fatou lemma.
3. Now, we take as X the space of all infinitelly differen-

tieble functions in J-o,w[ and we put

§:1(® = 300@(\:(1’1)(1:”)“ v 12152400

where (f is a convex (‘P-function (see 1Y [BD.
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8 S.
eor . It €X then =>0 implies —2 350
Theorem 4 %€ Xo o X, p X,
end ll!nlls >0 implies |lrhn§o—~>o as n—>00.

Proof. Since xnél‘f, , applying the arguments of [4], we
[
get
91(2'111) 2 gz(lxn) Z e

for any A >0 and n=1,2,... . Supposing xn-5—>o , there exists
a 2> 0 such that §1(P\- In) —>0 as n->om. By the above inequali-
ties, 91(1 xn)——>0 a8 n —>o uniformly in i . Consequently,
xng9—>o . Similary, |l :rhug»o implies || xnus,o-—em .

4, We define now the modulars S’i like in 3, but replacing
]-‘m,oo[ by the r-dimensional space R® . Thus, X will mean the spa-
ce of all infinjitely differentiable functions in RT and we write

§,(x) = 5(?(‘ pixct) |)dt ,
Rr

whers is(1i,15,...,1.) 1s & multiindex and
i,+..041
ol 3 1 r
= i, 1r
9ty = ... Ot .
In the following, we sheall omit the symbol R* under the sign of the

integral.
Theorem 5. The space x§ is complete.
8

Proor. Let (xn) be a Cauchy sequence in xS, Then
s L]
9 s(x(’n - xm))'*o a8 m,n —>m for every A > 0. Hence we get, in

particular,

5‘?(“”*5,(*) - D’x.(t)l)dt —>0 as mn->00

for every A > O. Let P be set of multiindices p=(p1.p2.---.p,.)
with p.=0 or 1, j=1,2,...,r. Applying formula (4) from [2] we
obtein '

CF(—;—]»”,, *) - D’x_(t)D 4225?@'”15(')-1’%, (v)‘) o
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foxr every teRY . Consequently, the sequence (Di:rn(t)) is uni-
formly convergent in R as n—>o for every i. Thus, there exists
an infinitely differentiable function x such that Dixn(t)‘*Dix )
uniformly in RY as n—> o for every i. Let us choose an £> 0
and let us fix A >0, There exist an index N such that
S, (A (x, - xm))<a for mn >N . Let I=(I;,I,,...,1.) be a
fixed multiindex, and let i=(i1,12,...,ir)gI means that 1, LT,

for k=1,2,...,7. Applying Fatou lemma, we get

ZS?(X'Dixn(t) - Dix(t)t) atg

is<I

<m_?m i<15(f(lbi’n(t) - Dixm(t)o at < um gs(l(xn xm))<g/

for n> N ., Since I is arbitrary, we obtain 538(7\,6&1 - x))gf/

for n >N . Hence x,—>x in IS, and xexS .
8

8

Let us remark, that completeness of I&’ was proved in [3],

Lemma 3 and Theorem 10. The problem of completeness of I§’ will
Yo

be dealt with in another note.
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