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SOME PROBLEMS OP CONVERGENCE IN COUNTABLE MODULARED SPACES 

J.MUSIELAK AND A.WASZAK 

Poznan 

1. Let .&*X--->[O9CD] 9 i «1 ,2 , • • •§ be a sequence of pseudomo-

dulars in a real l inear space X, i . e . g i ^ 0 ) * 0 ' $l^~x)m § 1 ^ » 

^ i(oCx+ /3>y) < § ± (x)+ ^ t ( y ; for *C9fb > 09 a£+/J»1, x fyfcX, and 

l e t 5iCx)mO for a l l i imply x*0. By means of t h i s sequence, one may 

define the following modulars in X : 

1 & ( -> 

( see [ l ] t [ 6 ] ) . Let £ be any of the symbols § f £ Q 9 § g . Then 

X~ » | x 6 X i j ( x x ) - > o as *-"*Oj i s the modular space generated by 

the modular ^ 9 | |x |L « inf \ u > 0 t ^ ( x / u ) <; uv i s an P-norm in 

Xa- 9 and ||x^ - xllar—>0 as n—>oo with x,x^eXgr i s equivalent to 

the condition sC^O^ - x ) )~> 0 a s n - ^ o for every X > 0. If 

there e x i s t s a X > 0 such that ^(^0^ ~ X))~^Q as n - > o o 9 then 

we sha l l write a ^ - ^ x (see [ 5 ] ) . Obviously, flx^ - x||g-—>0 implies 

*n-^ x • 
In this paper we shall establish some conditions in order 

that convergence in the norm ||)L be equivalent to convergence in 
o 

the norm II' \\f0 9 in two important spaces. Also9 acme completeness 

problems will be solved. 

2. In the first of the above mentioned cases, let y t b e a 

finite measure in a Cr-algebra J£7 of subsets of an abstract, non­

empty set SI , and let X be the set of JET-measurable real functions 

on Q. with equality ^t-almost everywhere. Let (^) be a sequence of 

^p-functions (see [8]), and let 

SiW-^iO'Ct) ! )^ . 
The following condition will be used : 
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(T) there exist positive constants k fc,u o>0 and an index iQ such 

that YiG**) < k ̂ fj C«) for all u > u and all i > i . 
o o o 

Thqorei 1. If (<f±) ^ e equlcontinuous at 0, Cf) holds and 

at^ex^ , then -*^-^0 implies x^^-^O and lla^llg—»0 implies 

Proof. Prom 2*1 in [l] follows x^€Xp . Moreover, CT) may 

.>o 

be written in the form: there exist a positive constant c and an in­

dex ±D such that for every u» > 0 there is a k
f > 0 such that ^ 0 0 

< k» cf± (u/c) for all u > u' and all i > iQ . 

Hence 

(») f&O < * ?ifi$ + f^ycw 
for i > iQ and \> o . Choosing arbitrary 6 > 0 f we may take u

f?0 

such that (^dif)yM.(S2)< -£, f and a constant k* > 0 coresponding to 

this u*. How, let us suppose that a-̂ -̂ -̂ O, i*e* gC^'ii)"^^ *>or a 

# > 0 . This implies ^iC^* 3^)""^ a B »->» for all i. In parti­

cular, <?£ C ^ ^ ) " ^ 0 a B n"~^°°» Choosing x»c-Xf we may find nQ 

o 
such that 

Applying the inequal i ty (*) w« g«* §±(x\) <& f o r n > n o a n d 

i > i . How, we choose 5 in such a manner that §i&fXn)<& tor 

n > n and i < i Q . Taking X0» » in fat X') f we obtain S iC^o**)*^ 

£, for n >niax Cn f 5 ) and a l l i . Consequentlyf x^ ° >0 . Sup­

posing l l a ^ L — > 0 f we obtain | | ^ | L " * ^ 0 in a s imilar way. 

Theorem 2. We suppose the measure AJL to be atomless and Of.j/to 

be equicontinuous at 0 . Then 

1° i f there e x i s t s a X> 0 such that for every i there are numbers 

/3i • T̂ i > ° f o r w h i c h ^ i ^ *) </3j^fkC«) f°* a3L1 ^ ^ i ^ 
k > i f and i f ^ e l ^ , x ^ - ^ 0 imply J ^ - ^ ^ O f then there 

holds C^)t 

2° if for every A.> 0 and every i there are numbers fb^ 1^ "> 0 such 
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that CfiOu) < /3i
cf\(*) for all u > T> ± and all k ̂  i , and if 

*n e X e • I! x_ |L — ^ 0 implies il-^|L->0 , then there holds (t). 
5o o So 

Proof. Let us suppose 0 0 does not hold, then there exists 

an increasing sequence 0-^) of indices and an increasing sequence (11 ) 

of positive numbers, t^""^00 » in^n) ^ 1 for n a c 1» 2f*» s**0*1 **** 
Cf l aG"« n)>2

f tf n(« n) for n-1.2.... 

(compare [1J). We choose measurable, pairwise disjoint sets A_eQ 

such that ^(vQ/i-CJ^) - 2~n/JL(&) and we take 

K for **** • 
^ [0 for t^A^ . 

Then 

?iO»n> - <fi^«nWV < CfAunLu^)->o 
as l - > 0 , uniformly with respect to i . Hence ^0(^-a^)» sup ^ f a x L ) 

—*-0 as X-^0, i » e . .^eio . 
oo 

Now, under the assumptions of 1° , we obtain 

tow a suitable 1 > 0 , n > i and n so large that ir ̂ 1^4 #Hence 

?i^^"^° as n~~>0° foT a11 * • Consequently, X.^-^0 . It is 

easily seen that under the assumptions of 2° , we get || x^ |L — > 0. 

Now, we prove that x ^ - ^ 0 does not hold, all the more, also ||ar II 
to So 

—>0 does not hold. Indeed, supposing i^^-^O, there would exist 

a X> 0 such that ^ ( X ^ ) - > 0 as n->oo uniformly in i . In 

particular, §±C^\)">0 as n—>a> . On the other hand, 

SijT***) - Tjft(2^)/-^)>^fnCV/^^V
t^' 

a contradiction. 

'flieorem 3. The space Z n i s complete. 

Proof* L^t ( ^ ) be a Cauchy sequence in L . Then 
oo ^* 
J?1 SkC^^3^ " *toO~"^0 as m,n—>oo for every X > 0 . Let us f i x 
i*1 
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i. There exists an increasing sequence of indices Cn^) such that 

for m-n^n^. g í_r><-_--_>><ŕrø 
In particular, 

_>: ^ ч . , - v) <V ^CH • k-,-г-
i - t 

Let us choose 

A k í t e a ' | r ^ V - W*»)>K0W)} , 
then 

И r ø >ІЙ.( гiч., ( t ' - V«>l)WЫf (-*_) . 
k op 00 

and so /*(>
k
) < 2""* . Denoting

 A m (~) [ ) A
k •

 w e h a v e M^*0* 
3-1 k»J 

Henoe for any t6A
f
*_n!_\A there exist a i such that 

^ ^ ' S ^ - V ^ O ^ f p r ) '» ->•• 
l a port-oiil--, | ^ , C » ) " ^ C « ) | < X ? V for fc > J . and «o 

the s rie ^ 
00 

% 
( t ) ł_E (ч.,(t) - ч(t>) 

k»t 

is convergent. Denoting its SUB by xCt) we obtain _L, (t_) —•> x C O 

a.e . in íQ . By Patou 

_C5cfi(*|vt) -'«'«) y^jitt.? t?.r>~s - «_.))< 
І-1 O i-1 Ä 

< - _ - * & ) 

for every I and k«192,### . Taking H->aD, we obtain 

§ 8 (^--) )<pr^C?) *« w.2. 
Moreover, 
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§s
 (%(Xm

 " Ч ^ ̂  ? % (?)
 f

°
Г Ю
 *

 Пk 

Hence 

i^ m - x ) )<iE c f i (?) f o r m ? n « ' 
Let us choose £>0 and X > 0 and let us take k so large that 

#=*"% (¥)<e•We obtain ?s(^C i a"x ))< < s for m >n* • 
where k depends both on & and on % . Let us remark t h a t the f u n ­

c t ion x i s independent of % . Indeed, l e t xf ., x9 * correspond to 

two values Xf , l£f ^> 0 f i.e. 

§ 8 ( l XCxm~ X'}) < 6 f ° r m > V 
and . 

9 (I X'(xm- x"))<^ for m * n k * • 

and l e t 0 < ^ ^ X* • T h e n 

?. ( i *(x' • x , , ) ) <s a 0 X C x ® • x , ) ) + ?.(f ̂ ^ - x , , ; ) < 2£-
for m > max (nJ , nlr9) • H e n c e 

? a ( l * ( * ' - * " ) ) = o 
and consequently, xfCt) » xffCt) a.e. This proves x to be indepen­

dent of X , and so x: —>x in Xp . 

Let us still remark, that both spaces Xg and X ^ are 

complete in the respective norms II * Ĥ> and |l • \IQ .In case of "Kg 

this follows from completenes of the Orlicz spaces L^ for i*1f29.. 

ŝee e.g. [s]). Completeness of X^ follows from that of Xj> and 

from 1#4 in [l]f applying Patou lemma. 

3. Now, we take as X the space of all infinitelly differen-

tiable functions in ]-oo,oo[ and we put 

Si ( l ) - Jjp(|*a-l)Ct)|)dt . 1-1.2 
where ^r is a convex Y~func*ion (see e»&» [8J) • 
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Theorem 4. If a ^ * ^ » t b e a *& ̂ ->0 implies x^ * >0 

and Ha^lL-^O implies ll^llp—^O as n~»oo. 

Proof. Since at^eXp f applying the arguments of [4J , we 

get 

for any X > 0 and n « 1 f 2 f . . . . Supposing x^-£-->0 , there e x i s t s 

a X > 0 such that ^ ^ a ^ ) - > 0 a s n - > 0 D . By the above inequal i ­

t i e s , ^ C ^ 3-̂ ) —> 0 as n ->oo uniformly in i . Consequently, 

a ^ ^ O . Similary, || xJI^O implies II a ^ | | ? - > 0 . 

4 . We define now the modulars §^ l i k e in 3, but replacing 

] -oo f oo[ by the r~dimensional space Rr . Thus, X w i l l mean the spa­

ce of a l l i n f i n i t e l y d i f ferent iable functions in Rr and we write 

Rr 

where i» (i.-, i2,..., ir) is a multiindex and 

D-
rлІ-| + ...+i

r 

ï-j Ç " 
Әtj ... з̂ p 

In the following, we shall omit the symbol R
r
 under the sign of the 

integral. 

Theorem 5. The space X@ is complete. 
•38 

Proof. Let (x^) be a Cauchy sequence in X*> Then 

§ S ( X C ^ -
 : V ) ) ^ ^ 0 a s mtn-^oo for every ^ > 0. Hence we get, in 

particular, 

J ^(xl-A^Ct) - D^CoQdt-^O as m,n->oo 

for every X > 0 . Let P be set of multiindices p»/p-|»P2f • • *»Pr) 

with p »0 or 1, j»1,2,...fr. Applying formula (4) from [2] we 

Obtain rr 

f (jH»V*) - »V«)|)<Z-WlDV"-A.wl)« 
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for every t€R r . Consequently, the sequence {J> ̂ r. Cty is uni­

formly convergent in Rr as n—>oo for every i. Thus, there exists 

an infinitely differentiable function x such that D^CtJ-^D^Ct) 

uniformly in Rr as n—>oo for every i. Let us choose an «S>0 

and let us fix ^ > o . There exist an index N such that 

Ssfa** " Tm))<& foT ffi»n>N • Let I»(lv
I2'---»Ir) be a 

fixed multiindex, and let i=*(i-|, i2>.. *t ip) ̂ 1 means that i^^I^ 

for k=1,2,...,r. Applying Fatou lemma, we get 

^W(x\v\CV - D**Ct)|W 

for n^> H . Since I i s arbitrary, we obtain ^ s l ^ ^ n ~ X))^-S 

for n ^ N . Hence .x —>x in X~ and x e X p . 
o s us 

Let us remark, that completeness of X^ was proved in [3], 

Lemma 3 and Theorem 10. The problem of completeness of X^ will 
^o 

be dealt with in another note. 
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