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A HEREDITARILY NORMAL STRONGLY ZERO - DIMENSIONAL SPACE 

CONTAINING SUBSPACES OF ARBITRARY LARGE DIMENSION. 

EL2.BIETA POL AND ROMAN POL 

WARSZAWA 

1. It was an old problem raised by E. Cech [2] whether the 

covering dimension dim is monotone in the class of hereditarily normal 

spaces; the analogous problem for the large inductive dimension Ind 

was investigated by C H. Dowker [3] (cf. also [1] and [12]). 

Under the assumption of an existence of Souslin's continuum 

V. V. Filippov [8] solved these problems in the negative exhibiting 

a hereditarily normal space X with dim X = 0 containing for 

n = 1,2,,.. a subspace X with dim X = Ind X = n. ' ^ n n n 
A year ago we constructed [15] using only the usual set theory 

a hereditarily normal space Z with dim Z = 0 containing a subspace 

Y with dim Y = Ind Y = 1, and quite recently we improved this 

construction [16] to get a hereditarily normal space X with 

dim X = 0 containing subspace X with dim X = Ind X =11 for 

n = 1,2,... 

It is worth while to notice that compact hereditarily normal spaces 

missing the monotonicity of dimensions dim and Ind were constructed 

recently by V. V. Fedorcuk [5],[6] and A. Ostaszewski [13], under some 

hypothesis stronger than the continuum hypothesis, and more recently, 

by V. V. Fedorcuk [7] and E. Pol [14], under the continuum hypothesis. 

In this note we shall briefly discuss the main idea of our construc­

tions. Our topological terminology will follow [4]. 

2. B. Knaster and K. Kuratowski gave in their classical work on 

connectedness [10] the following beautiful construction of a 

hereditarily disconnected, but not totally disconnected space K : 

let P be irrationals and Q rationals from the unit real interval 

I, and let E be a subset of P which is not an F^ - set in P; 

then define K = Expu ( P N E ) X Q C P X I (compare with the Knaster -

Kuratowski Broom [1],[4],[9; p. 22]). 

The standard proof that dim K = 1 relies on the verification 

that the sets (P \ E) x {0} and (P\ E) x {1} can not be separated 

by the empty set. 

However, one can also observe that each G - set in Px I 

containing the space K contains a set {p} x I for a point pe P 

and this property suggests the following construction. Let us split 
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P into n+ 1 disjoint Bernstein sets B .B......B (i.e., each B 
J o' 1' ' n K m 

intersects each subspace of P homeomorphic to P [11;§401) , let, 

for 0 < m < n , R be the set of the points in the n-dimensional cube 

I exactly m of whose coordinates are rational (i.e., we consider 

the standard decomposition of ln into n+ 1 zero - dimensional sets 

[9; p. 19]; note that R° = P and R* = Q) and let us define n m n K - Un B x R . Then each G - set in P x I containing K n m=0 m n a n 
contains also a set {p> x I for a point peP and hence dim K = n. 

We have seen that the dimension of the spaces K or K was 

designated by the Borel properties of the sets E or B , respectively. 

Following this observation, in ojrder to obtain a perfectly normal 

space with local dimension less than dimensions dim or Ind, (which in 

fact is just what we need) we would like to get through constructions 

analogous to that of K or K with an appropriate perfectly normal 

space B, in which local Borel properties of sets differ from global, 

instead of P. We shall describe a correspondent space B in the 

next section. 

3. Let -(a. be the set of all countable ordinals with the discrete 
N topology, let N be the set of natural numbers and let B()£-) = io 

be the Baire space of weight )f . To define the space B we give the 
N set oj a topology finer than the topology of B(xv), by taking as a 

N base the sets Ufl {x6_ : x(n) < a for n G N}, where U is an open 

set in the Baire space B()f.) and a < co . 

The space B is perfectly normal, but not paracompact. Although B 

is locally second - countable and thus its local structure is quite 

different from those of B()f ), the topology of B is closely 

related to the topology of B()f_) and, in particular, the Borel sets 

of B and of B()f_ ) coincide. The detail informations about B the 

reader can find in [17]. 

4. A. H. Stone [19] defined a non - Borel subset E of the Baire 

space B()f, ) such that each separable subspace of E is countable. 

The set E considered as the subspace of B is also non-Borel, 

however E is locally countable in B . 

We let (compare with the definition of K in sec. 2) 

Y = Expu ( B V E ) x Q c B x i . Since E is locally countable, we infer 

from the sum theorem that the local dimension loc dim Y = 0 , whereas 

dim Y = Ind Y = 1 , by the same arguments as in case of K . 

The space Z we are looking for can be now defined as follows : let 
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Z = Y u {p} where p£Y , Y is an open subspace of Z and the basic 

neighbourhoods of the point p are taken in the form {p} U U , where 

the space Y \ U is open - and - closed in Y , second countable and 

zero - dimensional. One can easily verify that the space Z is 

hereditarily normal, Lindelof and dim Z = 0 . 

5. The construction of the spaces X will imitate the definition 

of the spaces K given in the section 2, where the space B (sec. 3) 

will be used in place of irrationals P . 

For the purpose we shall exploit the decomposition B ,...,B of 

the Baire space B(vj* ) into n+1 disjoint non - separable analogues 

to the Bernstein sets in P, constructed in [18]. 

The sets B considered in the space B are locally Fa - sets, but 

their global properties are similar to those of the Bernstein sets, 
n 

We let X = U (B xRra)c B x in . 
n .^-r. m n 

m=u 
By the sum theorem we have loc dim X = 0 . However, as in the 

n * 

case of the space K , each G - set in B x I containing the space 

X , contains a set {p} x i for a point pGB and this easily 

implies that the projection of X onto the n - dimensional cube In 

is an essential mapping (cf. [1]). Thus n<dim X <Ind X , while 

Ind X < Ind B + Ind In = n . 
n — 

The hereditarily normal space X with dim X = 0 containing all 

of the spaces X can be obtained in the same way as the space Z 

from the preceding section, where we let Y to be the free union of 

the spaces X . 
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