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ON SINGLEVALUEDNESS AND CONTINUITY OP MONOTONE MAPPINGS 

M. FABIAN 

Praha 

X* Let T: X >2 be a monotone multivalued mapping from a 
real Banach space X to its dual X* (endowed with the norm dual 
to the norm on X) such that its domain has nonempty interior, i.e., 
int D(T) /- 0. For sake of simplicity, we denote the following as­
sertion by (A). 

The set of all those xeint D(T) for which Tx is a single­
ton and T is upper semi continuous at x, i.e., to each 6 > 0 the­
re exists a 8 > 0 such that for all u € D ( T ) t fulfilling Hu-xll<£, 
the set Tu is included in the f-neighbourhood of Tx, is dense 
residual in int D(T). 

Up to now the following theorems on singlevaluedness and con­
tinuity of T are known. 

THEOREM 1 (Robert [5]). X* is separable ===->( A ) . 

THEOREM 2 (Author [l]). X is reflexive = = » ( A ) . 

THEOREM 3 (Author [2]). X* is strictly convex and has the 
property (Hw) (see below) = = £ ( A ) . 

THEOREM 4 (Kenderov, Robert [4])• X* has the property (H) 
(see below) = = * ( A ) . 

Thanks to the renorming statement of John and Zizler [3], 
Theorems 1 and 2 are included in Theorem 3 or 4. 

In this communication, we outline the way how to obtain Theo­
rem 3« 

1. Let P be a metric space, X a real normed linear space, 
X* its topological dual endowed with the norm dual to the norm on 
X. We say that X* has the property (H) (resp. ( H j ) if for every 
w € X* and every net (resp. sequence) f ^ l c x * the following im­
plication holds 

(w<c >w ( w e a k l y * ) , flwj >||w»)===^wot >w. 
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Throughout the section, T: P »2 will be a demiclosed multiva­
lued mapping, i.e., (we do not distinguish a mapping from its graph] 

VueP ^wGX* Vnet ((^,wj)cT 

(u* >u9 w^ >w (weakly*), sup||ŵ || ̂ + < P ) - = - = = 4 ( u , w ) ̂ T. 

A singlevalued mapping T4 : P- >X*, having the same domain as T, 
i.e., D(T<)=-D(T), and such that T^CT, is called a selection of 
T. If, moreover, (u,w)gT implies l/wl/ ̂  ((T̂  u|(, then T4 is 
called a lower selection of T. Let fy: P >(-ot>, + co] be the 
function defined by 

fT(u) = inf{||wi||w*TuJ, u * P . 

Finally set (TA being a selection of T) 

C(fT) « Xu€.D(T)| fT is continuous at ul, 

C(T^) « fu£D(T)| T^ is continuous at u], 

Cd(T.,) » -£u6D(T)| T4 is demicontinuous at ul, 

where demicontinuity means continuity from the metric topology to 
the weak* topology. 

Undetf the above notations and assumptions the following lemmas 
are valid: 

LEMMA. 1.1. fT is a lower semicontinuous finaction. 

LEMMA 1.2. The set C(fT) is residual in D(T). 

LEMMA 1.3. If there exists a unique lower selection T Q of 
T, then C(fT)C C

d(TQ) and hence, Cd(TQ) is residual in D(T)# 

LEMMA 1.4* If X* has the property (H^), and there exists a 
unique lower selection TQ of T, then C(TQ)=C(fT), and hence 
C(TQ) is residual in D(T). 

2. In this section we apply the above lemmas for the study 
x* of monotone mappings. Recall that a mapping T: X >2 is called 

monotone, if 

<x*-y*,x-y> ^ 0 for all ( x , ^ ) , (y,y*)eT, 

where <if#^ means the duality pairing between X r and X, and 
maximal monotone, if T is not properly contained in any other mo-
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not one mapping. In what follows, we shall assume that T: X >2 
is a maximal monotone multivalued mapping from a real Banach space 

X to its dual X* such that int D(T) 4 0, set 

SV(T) = {xeint D(T)| Tx is a singletonj. 

LEMMA 2.1. T is demiclosed, and if X is strictly convex, 

then there exists a unique lower selection T of T. 

LEMMA 2.2. For any selection T^ of T the following inclu­

sion holds 

C
d
(T

i
)/

r
)int D(T)CSV(T). 

PROPOSITION 2.1. If X* is strictly convex, then the set 

SV(T) is dense residual in int D(T). 

PROPOSITION 2.2. If X* is strictly convex and has the pro­

perty (H^), and T
Q
 denotes the (unique) lower selection of T, 

then C(T
0
) is residual in D(T). 

LEMMA 2.3. If T^, T
2
 are two arbitrary selections of T, 

then 

C(T<)f| int D(T) =- C(T
2
)Oint D(T). 

Now all is prepared for the proof of Theorem 3. 
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