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FIXED POINT THEOREMS FOR METRIC SPACE MAPPINGS
A. A, IVANOV
Leningrad

1. Let (X,df) be a complete metric space, |. X— X be a mapp-
ing (not necessarily continuous) such that

d(The, TR < 0dl=,y)

where D=Dp(X) » O<Q/<’1 . Men [2] | has e unique fixed point 13
and EmeP for each e X . Te following theorem is a direct
generalization of this result.

Theorem 1.

Let (X,d) be a complete metric space, T'. X—-'X be a mapping
such that

d (TP, TRY) < o (d (o )
where D=D(X) , W 18 a nondecreasing semicontinuous from the right
function, W)LV for >0 , 4—wW(%) is unbounded for Y —»roc.
Then | has a unique fixed point E and ﬁLmT xX=%¥ for each

xeX .

Then Yo+k
(T, T""%) < w(d e, T ")

and so

(T < d (, Th)+ d (TR T )<
< g+ (e, TP,

Therefore for (<K< p
d(x, TP )< d+ w(dg) =d,
di(2e, TAP)< Aot wld) =dg
d (o, TP*2)< dgtw(d,_g=dy,
Since M —(({) is unbounded for 4,—-co there exists ;> 0 such that

d,0< Yo~ (D(“Lo) . Since (@ 1is nondecreasing d’0+ Q)(“L) 4 Yo for
each Y4 < (g« Then

tho < %o
dy = dy+w(dy)< 1o
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A= dip+ (-0 <%
and therefore the sequence (T ’I)nzo is bounded. The further rea-
soning is a slight modification of [2] . It is interesting to note

that the conditions of nondecreasing of function W and unboundedness
of 4Y—w(t) for Y—o are essential, what follows from the examp-

les.
Example 1.

vt X={launf_, , d@y=lc-yl
w(w)=fmi§£ » plnn)=n
T(lan)=tnn+1),

It is easy to see that T satisfies all conditions of the theorem 1
but one, Y —w(%) is bounded for4—oo (1T—w(L)< n2)

Example 2. w
tet X={n|"_  d(xy)=la—yl
Tny=n+1.
Consider a integer value function A ,
A1)=0
22“1")—1 {1 < Za*m for 4 N
Let — Y- )
d«(mq‘d)’=2—2 yrDTME for y>x

—{
d(x,y)= &Yf&t’;d«(%n Xir1)

Y=Tq

where =< X<l K Tp=Y.
It is easy to see that ( ’d) is a complete metric space.
Let
? Cfor (0<v < ZX('L)
w(%)= %% for 43| p(T)=max { -z}

0<Z <Y
()+1
where Y (x)= .
Then satisfies all conditions of the theorem 1 but one, w 1is
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not nondecreasing.
2 In [3) the fixed point theorem has been proved for |: X— X
satisfying the inequalities

o i, ) + pA(Toe, Ty + Lo, T)+ dily, Ty +

+¥da, T+ dy, Taey] »0
& +p+29<min (0,-2Y)
}’)+"3”+8<O.
There exists the following converse of this result.
Theorem 2,
Let (qu) be a complete metric space, TZ X“‘*X be a mapping
such that
1) there exists {im Tn(x;z (]V(CU) for each £ X and
is a fixed point for e ’
2) for each ACJT=(’I)IT’R=3}} , €>0 there exist Mo » \2>0

such that N >Wh =——>T"(UQQA\) C U/e(Aj .

3) there exists a neighbourhood U of ]T such that

Ve Ing YaeU (nyng=—=T"xe U (T)).

Then there exist a metric d equivalent to the metric d on X
and numbers < , B , Y , 0" , such that (X,&) is a complete met-

ric space
oL+ p+Ry< min (0,-20) (1)
p-{—%%’ <0 (2)
sl + pUTe, T+ A @Tor dypl+ ()

+3d o, T+ 4y, Tw)] >0

for each X, Y from .
Proof. Let us consider d,* which has been defined in [5] .
It proves to be pseudometric under the conditions of our theorem.

Let E{(cnvg)=d*(oc,g) +d(aY(m), q/“?p) . It easy to see that ¢ is
a metric on X equivalent to the metric d and (X, a) is a complete
metric space. Let o =1, p=—0, Y=-6, &= 8, K_—.zio being a
number such that [5]

(T, Ty) < K 8 (),
These numbers satisfy (1) s (2,) and we need to check only the condi-

tion (3))
a0, )+ pd (T, Ty)+ L dae, T+ iy T+ 6 Td (e Ty iy -
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=ad(@,y)+ p & (Toe, Ty + pldloc, To) + & (y, Ty)] +
+§ ARG, Ty) + ¥y, T +a p + 290 (6@, 4 YD)
Substitute o =1 , f,=~—6 , 'r=—6 s =8 and use inequalities
d*(x, Tao) < A (e, Ty) + 0% (Tac, Ty)
Ay Ty < A7y, Toe) +dF (T, Ty)
¥l Ty) <4 0% (2D,
& (,y)—6 & (T, Ty )= 6 Lb¥e Ty + ¥ty Tyl + 8 Lo (e, Ty)+
e g+ 11 d(g@ngy) > day)— B Py
= 6 [d¥ (e, Ty) + s Hoey) + dF 4y, T + g d¥ )] +
+ 80 o, Ty + 0 (g, T + 11k (g (), g ) = & dF () +
FRd* @, Ty +2dX(y, Ty + 1M d (g @), ¢ )>0

3. Iterative test(for contractive mappings) is conclusive [6]
for (X,d) provided for each contractive goelfmap T , if [ has a
fixed point g , then the sequence (T" converges for each O

Then

=G
(necessarily to the fixed point E). There :re examples of metric spa-
ces for which iterative test is not conclusive [1]. It. is known that
for each dense in R set iterative test 1s conclusive. On the other
hand the following result can be proved,

Theorem 3.

For each dense in R2 countable set iterative test is not conclu-

Proof. Let X0={(I,%)l%#O}U{(O,O)}C R?

Consider co-ordinates 4 ,U defined by equalities

sive.

2 2
o il
- B R 2T

and define a mapping T X0—> Xo setting

T(w,0)=),
It is a contractive mapping on Xo « For each M on 9—axis the se=

o

quence (TnM)n=0 converges but for M which does not belong to
00

i(j-axis the sequence (TnM)n=0 does not converge. Therefore on
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(X,d) iterative test is not conclusive.

Let X be a dense in R° countable set. Then X -axis can be
choosen such that there is no point of X on X -axis but (0,0) and
therefore we can suppose XC Xo . Let |: Xo—’ Xo be the above de=-
fined mapping. In general case [ (X)¢ X but we can change |
in & suitable manner and find [’ X —X, such that T'(X)CX .

4. The detailed proof can be found in [4].
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