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TYCHONOFF SPACES THAT HAVE A COMPACTIFICATION 
WITH COUNTABLE REMAINDER 

MELVIN HENRIKSEN 

Claremont 

In 1935, L. Zippin showed that every separable rimcompact completely metriz-

able space has a metrizable compactification with a countable (not necessarily in­

finite) remainder [Z]. A Tychonoff space X with a compactification YX such 

that |YX-X| < to is called a Zippin space and YX is called a Zippin compacti­

fication. If, in addition, YX-X is metrizable, X is called a strongly Zippin 

space and YX a strongly Zippin compactification. In this paper, an attempt is 

made to characterize spaces that are Zippin or strongly Zippin. 

We succeed in this goal only in small part, but we do obtain a number of con­

ditions on a space that are either necessary or sufficient for such compactifica-

tions to exist. For the most part, proofs are omitted. A more complete version of 

this paper will appear elsewhere. 

At the Fourth Prague Topological Symposium, T. Hoshina also presented a paper 

on this topic. His results and mine overlap, but are not identical. 

All topological spaces considered are assumed to be Tychonoff spaces. Any 

buch space has a maximal compactification 3X, called the Stone-Cech compactifica­

tion of X that maps continuously onto any compactification yX of X with a 

mapping that extends the identity map [GJ, Chapter 6]. If the topology of X has 

a base of open sets with compact boundary, then X is called rimcompact (the term 

8emicompact is used in [Z] and semibicompact is used in [M]). Every rimcompact 

space has a compactification $X maximal among the compactifications with a zero-

dimensional remainder. $X is called the Freudenthal compactification of X 

[I, pp. 109-122] [M]. 

If P is a property of topological spaces, then X has P at °° if 

BX-X has P. It is noted in [HI, Sec. 3] that if P is compactness, local compact­

ness, a-compactness, or the LindelOf property, then X has P at °° if and only 

if yX-X has P for any compactification YX of X. A space that is a-compact 
V 

at « is said to be Cech-complete or an absolute G> . It is well known that a 

metrizable space is Cech-complete if and only if it admits a complete metric 

[E, p. 190]. X is Lindelof at °° if and only if every compact subset K of 

X is contained in a compact set K2 for which there is a countable family 

(U.) of open sets containing K2 such that any open set containing K? contains 

some U. . In particular, every metrizable space is Lindelof at °° [HI, Sec. 3]. 

Also, if X is Lindelof at °° and has a compactification with 0-dimensional 
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remainder, then X is rimcompact by [I, p. 114]. 

It follows that every Zippin space is rimcompact and Cech-complete. (See 

also [RI] [R2]). As is noted in [I, p. 109]: 

C£
 ү
(үX-x) = (үX-X) U R(X) for any compactification үX of X, 

where R(X) is the set of points of X that fail to have a compact neighbor-

hood. 

Thus, by [CN, Sec. 6], we have: 

1. Proposition If X is a Zippin space then 

(a) X is rimcompact. 
V 

(b) X is Cech-complete. 
(c) |R(X)| < exp exp ш. 

If X is strongly Zippin3 ťhen> in addition: 
(d) R(X) is a Lindelöf space. 

The upper bound in (c) cannot be lowered. For if Q is the space of rational 

numbers, then ЗQ is a strongly Zippin compactification of ЗQ-Q = R(ЗQ-Q), and 

ІЗQІ = ІЗQ-QІ = exp exp o) [GJ, Chap. 9]. 

Whether the conditions of Proposition 1 are sufficient to insure that a space 

X is a Zippin space remains an open question. Below, two kinds of sufficient con-

ditions are obtained; those that make R(X) a
 и
large

и
 part of X, and those that 

make it in a sense
 и
small

lf
. I begin with the former. 

A space X such that every family of pairwise disjoint of open sets is count-

able is said to satisfy the countable chain condition (CCC). A space X is called 

metacompact or weakly paracompact if every open cover has a point-finite open re-

finement. As is well known, every paracompact, and hence every metrizable space 

is metacompact [E, pp. 225-228], 

As in [LM], a space X is called dense separaЫe if every dense subspace of 

X is separable. 

2. Theorem. Suppose X is a Zippin space such that X-R(X) is separable. Then: 

(a) X satisfies ťhe CCC. 
(b) If X is metacompact or strongly Zippinл then X is a 

Lгndelöf space. 

(c) If X is strongly Zippinл then X is separable. 

(d) If X-R(X) is dense separable, so is X. 
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3. Corollary. Suppose X is a metrizable space such that (X-R(X)) is separable. 

Then the following are equivalent* 

(a) X is a strongly Zippin space. 

(b) X is a Zippin space. 

(c) X is separablej rimcompact, and Cech-complete. 

Next, a characterization of a special class of strongly Zippin spaces is 

given. It is established by decomposing the remainder of X in its Freudenthal 

compactification <J>X. 

4. Theorem. If R(X) is locally compact, then X is a strongly Zippin space if 

and only if X is rimcompact, Cech-complete, and R(X) is a Lindel'df space. In­

deed, such a space has a strongly Zippin compactification with remainder homeomor-

phic to either a countable discrete space or its one-point compactification. 

I conclude with some remarks, examples, and questions. 

A. By modifying [LM, Example 5.3], an example can be given of a Zippin space that 

is not strongly Zippin. It can be shown, however, that if R(X) is Lindelc5f and 

X is a Zippin space, then X is strongly Zippin. 

EL Clearly every closed subspace of a (strongly) Zippin space is (strongly) Zippin, 

and every open subspace of a Zippin space is rimcompact and Cech-complete by Propo­

sition 1. The existence of open subspaces of 3Q-Q that are not Lindel5f shows 

that an open subspace of a strongly Zippin space need not be strongly Zippin. I 

do not know, however, if an open subspace of a (strongly) Zippin space has to be 

a Zippin space. 

C. Recall that a continuous closed surjection f: X -> Y such that f" (y) is 

compact for every y e Y is called a perfect map. If Y = [0,1]-Q, then the pro­

jection map of Yx[0,l] onto Y is perfect, Y is a strongly Zippin space, but 

Y*[0,1] is not rimcompact and hence is not a Zippin space (although it is the 

product of a compact space and a strongly Zippin space). I do not know, however, 

if a perfect image of a (strongly) Zippin space must be (strongly) Zippin. 

D>. It follows easily from [GM, Example 5.3, ff.] that no connected Zippin space has 

a countable partition into compact sets. 

Is. It is easily verified that if R(X) = X is connected, then the remainder of 

X in any compactification is connected, whence X cannot be a Zippin space. 

(See [R 1, Corollary 3]). Indeed, if X is also Lindeltff at °° , it cannot 

even be rimcompact. In particular, a countably infinite product of copies of R 

is not rimcompact. 

£. It was shown by McCartney in [Mc, 3.6] that X has a maximal Zippin compacti­

fication if and only if X has a compactification with zero-dimensional remainder 
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and BX-X has only countably many components. Indeed, if this latter holds, then 

ФX is the maximal Zippin compactification. For a simpler proof see [D]. 

I am indebted to M. Rayburn for suggesting the study of Zippin spaces, and 

to Tom Savage and him for valuable conversations about it. Much of this material 

was presented at a seminar at Wesleyan University in the surnmer of 1976 and valu-

able comments were made by W. Comfort, T. Hager, L. Robertson, and T. Retta. 
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