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PRODUCTS OF [a,b] =CHAIN COMPACT SPACES

JeE., VAUGHAN

Greensboro

We introduce here two notions of "chain compactness in an inter-
val (a,b] of cardinal numbers,” and state several results about pro-
ducts of such spaces, Our main result may be considered as a generali-
zation to higher cardinals of the theorem of C,T, Scarborough and A.H,
Stone [5, Theorem 5,5] which states that a product of no more than Xl
sequentially compact spaces is countably compact, The complete proofs
of these results* will appear elsewhere.

The concepts we introduce here are natural augmentations to the
following two classical concepts of "compactness in an interval [a,b]
of cardinal numbers,”

Definition 1, (Alexandroff and Urysohn (1] ). A space X 1is
called [a,b] -compact in the sense of complete gccumulation points (or
[a,b] T-compact) provided that if E is an infinite subset of X and
if |E| is a regular cardinal with a </E|<b, then E has a complete
accumulation point p in X (i.,e., for every neighborhood U of p ,
we have |UnE| = |E|),

Definition 2, (Yu., Smirnmov (6] ). A space X is called [a,b)-
compact in the gense of open covers (or [a,b] -compact) provided that
if U 4is an open cover of X with a<|U|<b, then U has a subcover
W with [UW<a,

For a discussion of these concepts, we refer the reader to (7
Definition 3, A net [3, Chapter 2] f£:W—X with a well-orde-
red domain is called a transfinite eequence, and is said to have a gon-

yergent subseguence if there exists a cofinal subset AcW such that
f|A:A——I converges to a point in X ,

*This research was supported by a grant from the Research Council
of the University of North Carolina at Greensboro,
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Definition 4, A space is called [a,b] -chain compact (resp.
[a,b]r =chain compact) if for every cardinal m in (a,b] (resp. for

every regular cardinal m in ([a,b] ) every transfinite sequence
f:m —-X has a convergent subsequence, A space in which every trans-
finite sequence has a convergent subsequence is called chgin compact,

In this terminology, a space is sequentially compact if and omnly
if it is [w, w] =chain compact. It is also known [4, Theorem 4] that a
space is chain compact if and only if it is compact and scattered.

It is easy to see that a finite product of [a,b] =-chain compact
(resp., [a,b]r-chain compact) spaces is [a,b] -chain (resp. [a,b]T-
chain compact). Concerning infinite products we have the following two
results:

Theorem 1, A countable product of [a,b] =-chain compact (resp.
[a,b]r-chain compact) spaces is ([a,b] -compact (resp. [a,b]r-com -
pact).

Theorem 2, A product of no more than X 1 [w,b] -chain com =
pact spaces is [w,b] -complet.

Corollary (Scarborough - Stone). A product of no more that X
sequentially compact spaces is countably compact,

We now outline how Theorems 1 and 2 may be proved as easy corol=
laries of a general product theorem (Lemma 3 below).

Let ¢ be a class of filter bases, A filter base ¥ on a set X
is called a (P-filter base if Te § . A space X 1is called (-com-
pact if every ¢ -filter base F on X has an adherent point (i,e.,

n{F:FeFl #¢ )o A filter base is called total if each finer filter
base has an adherent point, and a space X is called totally ( -com=
pact if every @ -filter base on X has a finer, total, O -filter
base, These definitions are discussed more fully in [9] and [10] .
Here are some examples of (-compactness used in this paper.

1, Let (I)m denote the class of all filter bases G which have
a base F = {Fﬂza(<m} such that if «<p@ <m, then F >F; .Clear-
1y, (I)w ~compactness is equivalent to countable compactness,

2, Let (I)m xw denote the class of all filter bases G which
heve a base F = {F(«,n )t « < m and n <w} such that if « < «

and n<n’ them F(a ,n )oP(a',n").

Total §, -compactness is called total countable compactness,
For TB& -gpaces, & space is totaly countably compact if and only if
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it is a member of 2 ,Prolik’s class Pp (2] .

Lemmg 1, (a). If X is [m,m] -chain compact, then X is

totally (I)m-compact. In particular, every sequentially compact space
is totally countably compact.

(b)s If X 4is sequentially compact and [m,m)-chain
compact, then X is totally mew ~compact,

A class  of filter bases is said to be < m-additive provided
that if { fe & &« € A } is a family of @ -filter bases on a set
X, and |Al<m, then sup {F, :« €A} e d if it exists, where
sup {F, 1« ¢ A} 1is the set of all finite intersections from
U {Tac K € A} provided all such intersections are non-empty, A class

$ is said to be gtable under functions (resp. inverse functions) pro-
vided that for every function f:X—Y, if F is a {-filter base on
X, then £(F) = {£(®):F c¢Fle O (resp, if § 1is a -filter base on
2(X)c¥Y, then £ 1) = {#3(®):Fe¥F}ed).

Lemmg 2, (a). For all m, d)m ig finitely additive (i.e,, <w =
udditive) and @m is countably additive (i.e., <w1-additive) if and
only if cf(m) = w.,

(b)s PFor all m, <mew is countably additive, but not
an; 2-additive.

(¢). Both classes §, and ¢, are stable under
functions and inverse functions,

The remaining result which we need is a corollary to Theorem 1
of [10] .

Lemma 3, Let ® be a class of filter bases which is stable
under functions and inverse functions, Assume that @ is <k-additive,
where k is an infinite cardinal number. If {X“ tx < k} is a fa-
mily of totally @ -compact spaces, then TT{XO‘ t &K< k} is { -compact.

To prove Theorem 2, let {X :ac<w1} be a family of [w,m]~chain
compact spaces, For each infinite cardinal number nsm, the spaces
X, are totally §  , -compact. Thus X =T{X, : a<w}is § ,  -com=

pact, hence [n,n] -compact for all nsm, thus X is [w,m] -compact.

Theorem 1 is proved in a similar manner, Other applications of
Lemma 3 are given in [10] .
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