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PRODUCTS OP [afb] -CHAIN COMPACT SPACES 

J#E# YAUGHAN 

Greensboro 

We introduce here two notions of "chaìn compactnes in an int r-

val [a
f
Ъ] of cardinal numbers," and tate everal result about pro-

duct of such spaces
#
 Our main re ult may be con idered a a generali-

zation to higher cardinal of the theorem of C
#
T

#
 Scarborough and A

#
H

# 

Stone [5f Th orem 5
f
5] which stat that a product of no more than X-. 

equentially compact spaces is countably compact
#
 The complet proof 

of these re ult * will appear elsewhere. 

The concepts we introduce her are natural augmentation to the 

following two clasэical concepts of "compactn s in an int rval [a
f
bj 

of cardinal number
 #

w 

Definition lm (Alexandroff and Urysohn [1] )• A pace X is 

called [a
f
b] -compact in the en e of complete accumulation point (or 

[a
f
b]

 r-compąct) provided that if E iэ an infinite ub et of X and 

if ІE| is a regular cardinal with a<|E|<b
f
 then E ha a complete 

accumulation point p in X (i.e
#f
 for every neighborhood U of p

 f 

we have |UпEІ ш |в| )
# 

Definition 2. (Yu
#
 Smirnov [6] )

#
 A pace X i called [a

f
b]-

compact in the ense of open cover (or [a,b] -compact) provid d that 

if 11 is an open cover of X with a < |1í| S-b, then U has a subcover 

U' with (U'|<a. 

For a discu ion of the e concept , we refer the reader to [7] 

and [8]# 

Definition З
t
 A net [З

f
 Chapter 2] f:W-~X with a well-orde-

red domain i called a tran finite eeauence, and is aid to have a con-» 

vergent subseQuence if there exists a cofinal sub et Acf uch that 

fL:A-*X converge to a point in X
 # 

*This research was supported by a grant from the Research Council 

of the University of North Carolina at Greensboro. 
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Definition 4 # A space i called [afb] -chain compact (resp# 

[a fb]
r -chain compact) if for every cardinal m in [a,b] (resp# for 

every regular cardinal m in [afb] ) every transfinite sequence 

f:m-*X has a convergent sub equence# A space in which every trans-

finite sequence ha a convergent ub equence is called chaiń compact# 

In this terminologyf a pace is sequentially compact if and only 

if it i [шf u>] -chain compact#
 It is also known [4

f
 Theorem 4] that a 

pace i chain compact if and only if it is compact and scattered. 

It i ea y to see that a finite product of [a
f
b] -chain compact 

(re p
#
 [a

f
b]

r
-chain compact) spaces is [a

f
b] -chain (resp

#
 [a

t
b]

r
-

chain compact)
#
 Concerning infinite products we have the following two 

re ult : 

Theorem 1
#
 A countable product of [a

f
b] -chain compact (resp

# 

[a
f
b]

r
-chain compact) spaceэ is [a

f
b] -compact (resp

#
 [a,b]

r
-com -

pact). 

Theorem 2
#
 A product of no more than JC -, [ k l f b ] -chain com -

pact space i [u>
f
b] -complet

# 

Corollary (Scarborough - Stone)
#
 A product of no more that ît, 

sequentially compact paces is countably compact# 

We now outline how Theorems 1 and 2 may be proved as ea y corol-

larie of a general product theorem (Lemma 3 below)# 

Let ф be a cla s of filter ba es
#
 A filter ba e T on a set X 

is called a (Ь-filter base if f € ф
 #
 A space X is called 6-com-

pact if every ф-filter ba e f on X ha an adherent point (i
#
e

# f 

П {f:P e f} + ф )
#
 A filter base is called total if each finer filter 

base has an adherent point
f
 and a space X is called totally ф-com^ 

pact if every ф-filter base on X has a finer
f
 total, ф-filter 

ba e
#
 The e definition are di cuэsed more fully in [9] and [10]

 # 

Here are some example of ф-compactneø uэed in this paper
# 

1
#
 Let ф

ш
 denote the class of all filter bases 0 which have 

a base f ш { ^ : л < m} such that if <к < ß < mf then P^э P^
 #
Cleaз>» 

ly
f
 ф -compactnesз is equivalent to countable compactnes

 # 

2
#
 Lвt Ф

m x L Ü denote the cla s of all filter bases & which 

have a base f » {P(бC
 f
n ): Л < m and n < u)} such that if <к 6. oc' 

and n < n
#
 then ҖCĹ 9n ) :>P(öc'fn

#)# 

Total фц -compactness is called total countable compactnes
 # 

Por Tъ± -spaces
f
 a space i tøtaly countably compact if and only if 
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it i9 a member of Z .Prolik'e claea Pp [2] 

Lemma 1« (a). If X ie [mfmj -chain compact, then X ia 
totally $ffl-compact. In particular, every eequentially compact 9pace 
ie totally countably compact. 

(b). If X is eequentially compact and [mtm]-chain 
compact, then X is totally $ m x a ; -compact. 

A clasa $ of filter bases is said to be < m-additive provided 
that i f { F ^ , * ot e A } is a family of <$ -filter bases on a set 
Xf and |A| < mf then sup {P^ : oc £ A } t $ if it exists, where 
sup ft'& : & £ A) is the set of all finite intersections from 
tj fo\ : <* £ A } provided all such intersections are non-empty. A clas9 
$ is said to be stable under functions (resp. inverse functions) pro­

vided that for every function f:X-*Yf if f is a <J>-filter base on 
Xf then f(f) * {f(P):P e T} i <$ (resp. if f is a $-filter base on 
f(X)cXf then rHf) = {rX(P):P t f}e $). 

Lemma 2« (a). Por all m, $ m is finitely additive (i.e., <LO -
additive) and $ m is countably additive (i.e.f <cu;-j-additive) if and 

only if cf (m) = u> . 

(b). Por all mf $mxU)
 is countably additive, but not 

-C£j 2~a^itive. 

(c). Both classes $ m and $mxuJ are stable under 

functions and inverse functions. 

The remaining result which we need is a corollary to Theorem 1 

of [10] . 

Lemma 3» Let $ be a class of filter bases which is stable 
under functions and inverse functions. A99ume that <£> is <k-additive, 
where k is an infinite cardinal number. If {x^ toe < k} is a fa­
mily of totally $-compact 9paces, then ^{X^ : cc < k} is $-compact. 

To prove Theorem 2, let {X^ IOKLO^} be a family of [(j,m]-chain 
compact epacea. Por each infinite cardinal number n-Sm, the spaces 
X^ are totally $ n x t o -compact. Thus X »IT^X^ : oc<oo}le # n ^-com­
pact, hence [n,n] -compact for all nim f thus X id [a>fm] -compact* 

Theorem 1 is proved in a similar manner. Other applications of 
Lemma 3 are given in [10] . 
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