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A COMPACTNESS CRITERION FOR THE SPACE OP ALMOST PERIODIC FUNCTIONS 

F. Jeschek, H. Poppe, A. Stark 

Warnemiinde/Wustrow 

In this note we give a compactness criterion with respect to the uni­
form topology for the space of almost periodic functions. By con­
sidering besides the uniform topology the compact open topology we 
are able to deduce the uniform criterion in a simple way. This 
criterion generalizes a criterion of Fink CJ* ^e state our results 
here without proofs. A paper containing full proofs will appear in 
"Mathematische Nachrichjfcen" • 

Concerning some basic notions and results on almost periodic functions 
we refer to the book of BESICOVITCH C^J* The notion of almost 
periodicity of a function f from the reals to the real or complex 
numbers and most of the properties of such functions can easily be 
extended to the case that f takes values in an arbitrary BANACH space 
(see for instance FINK C^J* 

So, if R denotes the reals and Y is a BANACH space, let AP(R, Y) be 
the set of all almost periodic functions from R to Y. By C (R, Y) 
we denote the set of all continuous functions from R to Y. By the 
definition of almost periodicity we have AP(R, Y)cC(R, Y). By the 
norm Kg J « sup {|g(t)| : t£ R}, where |.| is the norm of the BANACH 
space Y, we have that AP(R, Y) is a normed space. Clearly the (metri-
zable) topology, induced by this norm on AP(R, Y) is the uniform 
topology T^. 

For f €AP(R, Y) and Te R let f^ : fT (t) * f (t +<T) for all teR, 
For each <f>0 let be T(f, £ ) « { T : \\fz - fl<£}; moreover, if A is 
a family of almost periodic functions, then T(A, £ ) « ^ T(f,<5 ). 

f £ A 
The following notion is due to BOCHNER C2J (8ee a l s o C^J^* 

The family ACAP(R, Y) is said to be unifoimly almost periodic (u.a.p.) 
iff for each £> 0 the set T(A,<f ) is a relatively dense subset of real 
numbers. 
fiy T™ w e denote the compact open topology. Concerning questions on 

CO 

fu and <tcot espec ia l ly on <Tco-compactness cr i t er ia we refer to 
POPPE CeJ o r KEM'.EY. C$J* 
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We can formulate the following theorem, including both a rcQ-criterion 
and a tf -criterion. 

Theorem. Let HcAP( R, Y); we consider the following conditions for 
H, where <F stands either for qr„ _ or for T. 

CO u 

(1) H is relatively ̂ -compact in AP( R, Y) 
(2) H is relatively sequentially C-compact in AP( R, Y) 
(3) (a) H(t) * ff(t) : t£R} is relatively compact in Y for each 

t«TR 
(b) H is equicontinuous 
(c) H is a u.a.p. family 

I) In the case of compact open topology fs T we then have: 

(1)<S«-«»(2) 
(1) »»»>(3)f (a), (b) 
(3) »«>(1) 

II) In the case of uniform topologyf« Z conditions (1), (2) and (3) 
are equivalent. 
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