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Some results on distance functions 

H.C. Reichel, Wien 

1. Introduction: For a topological space, metrizability is a 

highly desirable property, for the existence of a such a distance-

function gives one a valuable tool for proving theorems about the space. 

For similar reasons and motivated by the possibility of applications 

(e.g. in topological algebra, functional analysis or the theory of sta­

tistical metric spaces, to name only a few), the concept of a metric d 

on a set X has been generalized in several ways: 

(i) by weakening or omitting some of the "classical" metric axioms 

(pseudo-, quasi-, semimetrics, symmetries); and 

(ii) by generalizing the range of d, i.e.: by considering distance-

functions d on X taking their values in a partially or totally ordered 

set S with some additional structure ("non-numerical distance-functions"). 

- Both ways, as well as combinations of these possibilities have 

been studied by many authors (compare e.g. the - highly incomplete-biblio­

graphy and the introduction of [ 14] ). In this paper, we shall deal with 

not necessarily symmetric distance-functions taking their values in ordered 

semigroups S and satisfying the triangular inequality. 

Studying general distance-functions d usually raises two fundamental 

questions: 

(i) what is the "best" topological structure on X associated with &, beeing 

appropriate for a given concrete problem; and 

(ii) under what conditions is a given topological structure on X induced 

by a distance-function of a give type? (metrization theorems). 

This paper is concerned with some questions of the second type (the 

first question will be studied extensively in a forthcoming paper). 

2» S-metrlcs: a totally ordered abelian semigroup (S,+) with zero-

element 0 is an 0+-semigroup if 0 = min S; a< b => a + c<b + c for all 

a,b,c€ S; and for each s> 0, there exists t> 0 with 0< t< s. The cofina-

lity of S (cof S) is the smallest ordinal m such that there exists a 

decreasing u> -sequence {s./i<<t> } converging to 0€ S with respect to the 
order topology of S. 
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Definition: Let (X,T) be a topological space and S an 0+-semigroup, 
2 

then X is quasimetrizable over S iff there is a function d: X -» S 

satisfying 

(i) d(x,y) = 0 iff x=y; 

(ii) d(x,z)^ d(x,y) + d(y,z), for all x,y,z£ X; 

and such that, for each xt X, the system of all balls B(x,s) = 

= {y€ X|d(x,y)< s} , st S\ {0} , is a local base for x. (X,T) is metrizable 

over S if, moreover, d is a symmetric function. If S is the positive cone 

of a totally ordered abelian group G- with cof G = tt> we speak of 'to -(quasi) 

metrizability". 

A space X is (quasi) metrizable in the usual sense iff it is UJ -(quasi' 

metrizable; this follows, for example, from A.H. Frink's metrization theo­

rem and from H. Ribeiro's quasimetrization theorem, respectively ([14]). 

- Now we can ask which part of the theory of (quasi) metrizable spaces 

carries over to S-(quasi) metrizable spaces and which metrization theorems 

have analogues for this more general theory? Working with such S-metrics 

generally leads to situations completely different to the classical case. 

Important differences are caused by the fact that, on the one hand side, 

cof S may be > tt) , or, on the other side, a totally ordered semigroup S 

need not be a topological semigroup with respect to the order topology on 

S. Here, an 0 -semigroup S will be called "continuous" if, for every net 

{x,|i€ 1} converging to 0 w.r.t. the order topology, the net {x. + x,|il 1} 

converges to 0, too. It turns out that continuity of S (in this weak sense) 

is the crucial point in studying S-metrizable spaces. ' Note, for example 

' If S is the positive cone of a totally ordered abelian group G then S 

is, even stronger, a topological semigroup. Therefore, in this case, the 

theory of S-metrizable spaces (i.e. u- -metrizable spaces) shows strong 

similarities with the "classical" theory of metric spaces, (ou -metrizable 

spaces have been studied by many authors see e.g. the literature lists and 

introductions in [ 14], [16], [7] and the remark after theorem 7). - For 

examples showing how "far" a space (quasi) metrized over an arbitrary 

0 -semigroups S can be from uV-(quasi) metrizability, see [17], [ 14]* 
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that for an arbitrary set X and a distance function d: X -* 8 over a 

non-continuous 0 -semigroup S, the system of all balle B(x,s) need not be 

a base for a topology on X. - In the following, we collect some S-(quasi) 

metrizability theorems for general 0 -semigroups S as well as for conti­

nuous 0 -semigroups S and discuss several applications. - (Compare [14] 

and [18]). 

At first, the following theorems show that for studying S-metrizable 

spaces, we can restrict ourselves to only three types of 0 -semigroups. 

Example: For an arbitrary initial ordinal a, fix a set M= { x . / i < a } 

inversely well-ordered by x.<x. «• i> j and add an element 0<x, (i€a). 

Let S (M) = : S denote the free abelian semigroup over M, i.e. the set of 

all finite "formal sums" E X .x. , x. € M, X. a natural number, with the 

usual addition. Identify the empty "word" with 0€ M. Now, for different 

elements s = 1 X±xi, t =Z pixi, where Z X . j=E ̂ i, let s< t iff S Xi<I- ^i; 

otherwise, if E X . -=£ ̂ . .take j = min {i|X. \=\JLA and let s< t iff X .<\JL .. 

Then S„ is an 0+-semigroup with cof S A =- cof oc which certainly is non-

continuous* 

Theorem 1: A topological space is (quasi) metrizable over a non-

continuous 0 -semigroup S with cof S=m iff it is (quasi) metrizable 

over a semigroup S . 
u 

Theorem 2: For a topological space (X,T) are equivalent: 

(i) T is (quasi) metrizable over a continuous 0 -semigroup S with cof S-=-«> ; 

(ii) T is m -(quasi) metrizable; 

(iii) T is (quasi) metrizable over R , if ̂  = 0, or, for ̂ > 0, 

T is (quasi) metrizable over the lexicographically ordered abelian 

group G- =n Z. (i<u) ), i.e.: the direct product of copies Z. of the 

additive group of the integers Z. 

Note that the proofs for non-symmetric distance functions generally 

are completely different from the analogous proofs for the symmetric case. 

They are essentially based on theorem 5. (For symmetric distances, 

(ii) <* (iii) was known before). 
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3. Me,trization theorems: A topology T on X is m -additive iff the 

intersection of fewer than uu many open sets is open again. - A point 

p€ X is of cofinality uu if p has a totally ordered local base whose 

cofinality is uu . (X,T) is of characteristic uu if every non-isolated 

point p is of cofinality m . By convention, a discrete space is of 

characteristic tt> for every uu . We note that "x is of cofinality uu " is 
M M [i 

equivalent to "x has a totally ordered local base, and x can be gotten 

as an intersection of uu open sets, and no fewer than uu open sets". 

- Moreover, we let char(p)=min {card U(p)/U(p) is a local base of p} . 

Theorem 3: For a topological space (X,T) are equivalent 

(i) T is quasimetrizable over an 0 -semigroup S with cof S=uu J 

Cii) (X,T) is a T- -space of characteristic uu ; 

(iii) (X,T) is a W -additive T.-space and for every non-isolated point 

p, char (p) =«> . 

Corollary: Every first countable space is quasimetrizable over a 

countable 0 -semigroup (e.g., over S ). 
o 

For symmetric distance-functions, we obtain: 

Theorem 4: (X,T) is raetrizable over an 0 -semigroup S with cof S=u> 

iff for every non-isolated point pt X, char(p)=ui and every point has a 

local base U (p) = {Ui(p)/i<« } i> j =» U±(p) c U.(p), and such that 

q€ TJ±(p) -=> p€ IV tq ) for all p,q€ X and i <^ u-

Now we state some results concerning continuous 0 -semigroups S: 

Definition: A system S of open sets in (X,T) is a Q-collection if 

0{C€£|x€ C} is open for each x£ X. An open base % for T is an uu -Q-base 

if it is the union of w many Q-collections <£. : -8 =U (£.(i<<w ) and, more­

over, the intersection of fewer than uu many basis sets in -3 is open. 

.Por|i-=0, this concept coincides with P. Fletcher's and W.F. Lindgren's 

G-Q-bases ([4], compare also S. Nedev [10]). - Here it is worthwhile to 

mention the related concept of orthobases defined by P. Nyikos and 

studied e.g. in [11] and [9]. 
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Theorem 5: For a T.,-space (X,T) are equivalent: 

(i) T is quasimetrizable over a continuous 0 -semigroup S with cof S = 

= U) >w (i.e.: T is ou -quasimetrizable by theorem 2); 
^ o ^ ^ * JJ 

(ii) T has a w -Q-base (^>0); 

(iii) for every non-isolated point p€ X, char (p) =U) ^ > 0 ) and every 

p has a local base U (p) = {U. (p)| Km }, U^p) open, i> j => U±(p)--U.(p), such that qfc IV (p) => U.lqlc^tp), for all i<«- * 

(iv) T is non-archimedeanly ou -quasimetrizable, i.e. 

there is an a) -quasimetric for T such that d(x,y)£. max{d(x,z) ,d(z,y)}, 

for all x,y,z€ X, (̂ > 0),' 

(v) T is non-archimedeanly quasimetrizable over an (arbitrary) 0 -semi­
group S with cof S = U) >ttJ . 
to r ^ o 

Remark: For \i = 0, H. Ribeiro proved that T is (R-)quasimetrizable 

iff every non-isolated point p has a totally ordered countable local base 

U±(p), 1=1,2,3,..., such that q€ Uj+1(p) => Ui+1(q)eui(p). 

P. Fletcher and W.F. Lindgren [4], as well as S. Nedev [10], showed that 

for every T^-space, the existence of an w -Q-base is sufficient for quasi-

metrizability (overR) of T. However, J. Kofner [8] showed that this 

condition is not necessary. By theorem 5, the situation is different for 

^> 0. - Moreover, for ̂ -=0, P. Fletcher and W.F. Lindgren showed that T is 

non-archimedeanly quasimetrizable iff there is a o-Q-base for T. Thus a 

space has a U) -Q-base (w *-2:u> ) for its topology iff it is non-archime-

deanly quasimetrizable over a continuous 0 -semigroup. 

There is another characterization of spaces X having an U) -Q-base 

for their topology, including a characterization of spaces admitting a 

a-Q-base: 

Let S ={x./i<u» }, x.>x. • i < ] , be an inversely wellordered set 

and add an element 0<x., for all i<u) . Define x, + x . = max {x.,x.} and 
•*• K* -*- J J 

0 + xi = xi, for all i<ou ; then S is a totally ordered abelian semigroup 

satisfying a^b=-> a+c^b + c, for ail a,b,c€ S . 

Theorem 6: A topological space X has an U)-Q-base -3 ̂ > 0) for its 

topology T if and only if T can be generated by a quasimetric d: 

XxX-> 8 over a semigroup S . 
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Corollary: X is non-archimedeanly quasimetrizable over an 0 -semi­

group S iff it is quasimetrizable over a semigroup S , H---0. 

Theorem 5 has another interesting corollary, too: 

Corollary: For a topological space X, let q(X) be the smallest 

cardinal m such that X has a base consisting of a union of m Q-collecti-

ons. Obviously;, q (X)<m(X) . iw(X) where m(X) denotes the metrizability 

degree of X ([7]) and w(X) its weight. Then: 

(1) For « >w , X is (D -quasimetrizable iff X is an (u -additive 

T1 -space with q(X)<-U, ([ 1 8] ). 

(2) Every uu -additive space X with w(X)2Su) is u) -quasimetrizable 

(Here, m^m Q) . ([18]). 

(2) generalizes a well known theorem which states that every second count­

able space is quasimetrizable. (For more details, see [18]). - A detailed 

study of ou -Q-bases and the cardinality-function q(X) will appear 

elsewhere. 

The following theorem concerns symmetric'distance-functions again: 

Theorem 7: For every T-j-space (X,T) are equivalent: 

(i) T is metrizable over a continuous 0 -semigroup S with cof S-=ou >uu ' 

(ii) for every non-isolated,point p€ X, char (p) =UJ (LI> 0) and every p 

has a local base tt.(p) = {Ui(p)/i<w \ , U±(p) open, i> j -=> Ui(p)cU.(p), 

such that U±(p)n U±(q) 4=0 => U±(p) = U±(q); 

(iii) X and X are of characteristic » >u> and both spaces have a base -B 
M o 

of rank 1 (i.e.: AnB^0=* AcB or A D B for all A,B€ »). [11] , [ 2] . 

Remark: In the theory of u> -metrizable spaces all famous well-known 

metrization theorems have their analogues. In [ 12] (and [16] ) it is shown 

that most of them could be derived from an interesting generalization of 

J, Nagata!s general metrization theorem and a universal imbedding theorem 

for tt) -metrizable spaces where |_i> 0. Compare also [ 14] , [7] and its 

bibliographies. 
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To emphazise the role continuity of S (in our weak sense) plays 

in the theory of S-metrizable spaces we state another metrization theorem: 

a Cech-uniformity U on X (called "semiuniformity" in Cech's book [1]; but 

note that this expression is used in a different sense, too) is a 

generalization of A. Weil's diagonal uniformities which comes from 

dropping the condition that for every U£ U, there exists V^ U such that 

Yo Vc u. - Obviously every S-metric d on X induces a Cech-uniformity U 

in the usual sense. By combining methods developped for proving the pre-

ceeding theorems and using a theorem of Stevenson and Thron, we obtain: 

y 

Theorem 8: (1) a separated Cech-uniformity U on X has a totally 

ordered base of least cardinality w iff U is induced by an S-metric d on 

X over an 0 -semigroup S with cof S=u> ; [ 1 6] J 

(2) Such a (Jech-uniformity U is a diagonal-uniformity in 

the sense of Weil iff U admitts an S-metric d on X over an continuous 

0 -semigroup S. [16], 

A* Some applications: Methods developped in the realm of S-metrizable 

spaces have many applications. Here, we collect only examples of two 

types: characterizations of (R-)metrizable spaces and one example showing 

how certain aspects of S-metrizability could crop up unexpectedly in the­

ories which, for the first glance, seem to belong to completely different 

realms. 

Proposition 9: A topological space X is metrizable iff it is 

S-metrizable over a continuous 0 -semigroup S such that there is an element 

s€ S and every subset Tc S containing an element t-S s has a greatest lower 

bound. 

In [17], three examples show that these - in fact independant -

properties: the "topological" one of continuity of S (in our weak sense), 

the "algebraic" one that a< b => a + c < b + c, for all a,b,c€ S, and the 

ordertheoretic one stated above are needed essentially to establish the 

"classical" theory of metrizable spaces. Both papers, [ 17] and [18], are 

generally concerned with an investigation between structural properties of 

a totally ordered abelian semigroup S and (topological) properties of 

various topological structures induced by S-metrics d on a set X. - Other 

results obtained in the realm of S-metrizable spaces are, for example: 
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Theorem 10: ([16]) (1) A T1 -space X is a compact metric space iff 

X admitts a unique uniformity U and U has a linearly ordered base; 

(2) X is seperable metric space iff X admitts a 

totally bounded uniformity with a linearly ordered base. 

By using results of [13], and theorems of Venkataraman, Rajagopa-

lan and Soundararajan [Gen.Top. 2 (1972), 1-10] and H. Herrlich [6] we 

obtain a characterization of topologically orderable groups (G,T)> i.e.: 

there is a linear order < on G such that T is homeomorphic with the order 

topology induced by < on a. 

Theorem 11: A topological group (G,T) is topologically orderable 
iff either it contains an open normal subgroup homeomorphic with the 
additive group R of the reals with the usual topology, or T is non-archi-
medeanly metrizable over a continuous 0+-semigroup S. 

5. Metrizability over partially ordered groups: Recall that a metric 
d on X over a totally ordered abelian group G induces a uniformity U. on X 
by letting the system of all UN-= {(x,y)| d(x,y)€ N, Nan open neighbourhood 
of 0€ G} , be a base for U. - Now let (I/£) be a partially ordered index-set, 
and H«IIR i (i€l) the direct product where every R. is a copy of the 
additive group of the reals with the usual topology. Equip H with the pro­
duct topology. Finally, H can be partially ordered as follows: 
g*8 (fij^ (h^-sh in case, if g-]>*--j for some j€ I, there is some k such 
that k< j and g^< iî  and g^S hm for all m< k. Now, let d: XT -* H be a 
quasimetric over H (in the sense of § 1), then d induces a quasiuniformity U 
on X by letting UN=- <(xiy)| d(x,y) € N, N an open neighbourhood of 0€ H} be 
a base for U. Obviously, U then induces a T^-topology on X compatible with 
d. By using, amongst others, known theorems of A. Csaszar, I.L. Reilly and 
G-. Kalisch, we can show a converse, too: 

Theorem 12: For an arbitrary topological space (X,T) are equivalent: 
(i) (X,T) is a ^-space; 

(ii) (X,T) is quasimetrizable over a partially ordered group H « n R , (i€ I) 
as described above. 
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Remark: As a consequence of a theorem of G. Kalisch [Bull. AMS 52 

(1946), 936-939] it follows that, in theorem 12, T is completely regular 

iff there is a symmetric distance-function d ("metric") on X over H ge­

nerating T in the above described sense. (Note that Kalisch's theorem was 

proved also by M. Antonovskii, V. Boltjanskii, T. Sarymsakov in [Metric 

spaces over semifields (Russ.); Trudy Tashkent.Gos.Univ. No. 191 (1961), 

72pp; MR 28, #1583]). 
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