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CN COHESIVE MAPPINGS 
D. ZAREMBA 
Wroclaw 

In this paper some kind of mappings, named cohesive ones, is in­
troduced. There are a few propositions concerning properties of these 
mappings ana their relations to confluent ana atomic mappings. Some 
characterizations of confluent mappings are obtained. 

In the whole paper f denotes a continuous mapping of a topologi­
cal space X onto a topological space Y. 

1. Definitions and preliminary properties. Let us call f cohesive 

at the point yeY if f~ (y)df~ (S) for each connected subset S of Y 
such that y€ S. We say that f is cohesive, if it is cohesive at every 
point y 6_Y* In other woras, f is cohesive if and only if there is 
f 1(S)Cf 1(S) (or, equivalently, f~1(S) «= f~ (S) ) for each connec­
ted subset S of Y. 

Note that in case when f maps a metric irreducible continuum X 
onto the unit interval Y in such a way that f" (y), yeY, are layers 
of X (for definition see [6], p. 199), then f is cohesive if and only 
if each layer of X is a layer of cohesion in the sense of Kuratowski 
(see [6], p. 201). 

It is clear in view of [5], p. 117, Theorem 1, that if f is open 
at the point y (for definition see [51, p. 116), then f is cohesive 
at y. So the class of all cohesive mappings contains the class of all 
open mappings. On the other hand it is easy to see that there are co­
hesive mappings which are not open, for example the projection of the 
plane curve £(x,y): y - sin j , 0 < x $ 1jvy£(x,y): x -- 0, -1 <: y ̂  ij 
on the x axis. 

Note that there are monotone mappings which are not cohesive, 
for example the projection of the plane curve 

{(x,y): y * sin ~ , 0 < x ̂  1Jv^|(x,y): x -= 0, -1 ̂ y < 2 V on t n e 

x axis. 
Lemma. The inclusions 

BcY\f(X\f
::T(B))cB 

hold true for each f and each subset B of Y. 
Proof. It follows from f 1(B)nX\f 1(3) « 0 that 

Bnf(X\f1(B)) « 0 and consequently B cY \ f (X xf"1 ( B)). 
On the other hand, it follows from continuity of f that 

ff"1(B)cff""1(B) « B. Thus f(X)xB cf(X) \ff1(B) Cf(X\f~1(B)) and 

consequently Y\f(X \ f"1 ( B)) c B". 
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Proposition 1. A mapping f is cohesive if and only if f(U) is 
open in Y for each open subset U of X such that the set Y\f(U) is 
connected. 

Proof. Assume that f is cohesive and U is an open subset of X 
such that the set Y\f(U) is connected. Let S « Y \f (U). Therefore 
f~1(S) " X\f 1f(U)cX\U and consequently f 1(S)cX\U. Since 
f"1(S) cf (S), then f~1(S)C\U • 0. So s"nf(U) - 0. It means that 
f(U) is open. 

Concerning the inverse implication let S be an arbitrary con­
nected subset of Y and let U « X\f" (S). By the lemma we have 
ScI\f(U)cS, whence YNf(U) is connected. It implies that f(U) is 
open in Y. So S- Y \f (U) and f"1(S) « X\f"1f(U)cX\U - f~1(S). 
Thus f is cohesive. 

Proposition 2. A mapping f is cohesive if and only if f(U) is 
open in Y for each open subset U of X such that the family of all 
components of Y\f(U) is locally finite. 

Proof. In view of Proposition 1 it is sufficient to prove only 
one implication. Then assume that f is cohesive and let U be an open 
subset of X. Let j)c. v denote the family of all components of the 
set Y\f(U). It follows from C. cY\f(U) that f"1(C. ) CX \U_and con-— x x _ - = 
sequently f" (CjcX\U. Therefore the inclusion f (C.)cf (Ct) 

implies f ((C"t)nU - 0. So C*tnf(U) « 0. It means that Ct - Ct for 

every t. Consequently, if the family fc.^ is locally finite, then 

<vyct - v.^C"t - U
c f Tnus tne 8et f^u^ is °Pen« 

2. Relations to confluent mappings. In this part the space X is 

assumed to be compact Hausdorff. 

Proposition 3. The following conditions are equivalent: 

(1) for every subcontinuum Q of Y each non-empty open-closed sub­

set of f" (Q) is mapped by f onto Q, 

(2) for every subcontinuum Q of Y each component of f" (Q) is 

mapped by f onto Q, 

(3) for every connected subset S of Y each component of f" (S) 

meets f"1(S), 

(4) for every connected subset S of Y each component of f" (S) 
meets f (S), 

(5) for every connected subset S of Y the only open-closed subset 
of f"1(S) containing f"1(S) is f"1(S), 

(6) for every connected subset S of Y each non-empty open-closed 
subset of f"1(S) meets f"1(S). 

Recall that the mappings satisfying condition (2) were introdu­
ced by J. J. Charatonik in [2] as confluent mappings. 
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(1)=^(2). Let Q be an arbitrary subcontinuum of Y and let C be 
a component of f~ (Q). Since for compact spaces the components coin­
cide with the quasi-components (see [6l, p. 169>, then there exists 
the sequence U-, XS.?f ... of open-closed subsets of f (Q) such that 
C\ Ui « C. We may assume, of course, that

 u
i<f-jCU. for each i. It is 

easy to see that f(C) - fiCWl/) - Of(U.). It follows f(C) « Q, be­
cause by (1) we have f(U.) • Q for each i. 

(2)=*>(3). If C is a component of f~1(S), then f(C) - S~ by (2). 
So f(C)r\S 4 0 and consequently C of" (S) 4 0. 

(3) =^(4) is trivial. 
(4) *=$> (5). If U is an open-closed subset of f"1(s") containing 

f"1(S), then f"1(sl<lU. It follows by (4) that every component of 
f"1(S) lies in U. Therefore U -= f"1(S). 

(5) =^(6). Let U be an arbitrary open-closed subset of f" (Si). 
If U^f"1(S) - 0, then f"1(S)cf 1(S)\U. It follows by (5) that 
f"1(S)\U « f"1(S). So the set U must be empty. 

(6)~=^(1). Let us suppose in the contrary that Q\f(U) 4 0 -for 
some subcontinuum Q of Y and some non-empty open-closed subset U of 
f"1(Q^. Let S be a component of Q\f(U). Then Tr\l(U) 4 0 (see [6], 
Theorem 2, p. 172), whence f"1(S)nU 4 0. Denote V - f"1(S)oU. It 
follows from (6) that Vrvf" (S) 4 0. This is impossible in view of 
f1(S)Cf"1(Q)\f"1f(U)c:f"1(Q)\Uc:f1(Q)\V. So the last implica­
tion is also proved. 

Note that in the proofs of all these implications, except the 
first and the last, the assumption of compactness of X was not used 
and then it may be omitted. On the other hand one can show that in 
implications (1)-=^(2) and (6)=^(1) it is essential. 

It is clear that (4) holds true for every cohesive mapping f. 
So we have following 

Corollary. If f is cohesive, then f is confluent. 

?. Relations to atomic mappings. In this part the space X is 
assumed to be a Hausdorff continuum. Recall that f is atomic, if for 
each subcontinuum K of X such that f(K) contains more than one point 
there is f f(K) • K (see [1], [3l and [4P. It was proved in [4] (see 
Theorem 1) that each mapping f satisfying this condition is monoto­
ne. 

Proposition 4. If a mapping f is atomic, then f is cohesive. 
Proof.Assume that f is atomic and let S be a connected subset 

of Y._ Thus f" (S)__is a continuum and consequently we have 
f"1(S) « f"1ff"T(S) *- f~1ff~1(S) - f~1(S). So f is cohesive. 
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Proposition 5* If X is an irreducible metric continuum, Y is 

a closed segment of reals and f is monotone and cohesive, then f is 

atomic. 

Proof. Let X be a metric continuum irreducible between the po­

ints a and b. Then p - f(a) and q - f(b) are the end points of Y 

(see [6], p. 192, Theorem 3). Let K be an arbitrary subcontinuum of 

X such that f(K) contains more than one point, i.e. f(K) is the clo­

sed segment [r,s] with the end points r < s lying between p and q. 
— 1 —1 

Thus f"" ([p,r])uKuf ([s,q]) is a continuum joining a and b. Con­

sequent Ixit^J;^^^^! to the whole X. Therefore f" (Int[r,s]) cK, 

whence f" (Int[r,s])cK. Since f is cohesive, then we have 

f""'(Int[r,s]) - f~1([r,s]). So f"1f(K) - K. 
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