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EXTENSION OF MEASURES AND INTEGRALS BY THE HELP OF A PSEUDOMETRIC
B. RIECAN

Bratislava

0. Introduction. There are two mein concepts in the measure theo-
ry. The measure can be regarded as a set function defined on & set of
subsets of a given set. On the other hand measure can be regarded as a
functional defined on a set of real-valued functions. In both concepts
an extension process is necessary.

In this communication we present a common generalization of both
concepts. We study a reel-valued function Jo defined on a sublattice
A of a given lattice H with some properties. If we define & suitable
pseudometric, then Jo becomes a uniformly continuous function, it can
be extended to the closure A~ of A and this is the requested exten-
sion.

If H is & suitable lattice of sets, then the measure extension
theorem is obtained, If H 1is a suiteble lattice of real-valued func-
tions, then the extension theorem for Deniell integrals (or Raedon mea-
sures) is obtained.

Our extension process consists of the following three steps.

1. To a given sublattice A of H and a mapping Jo : A—R
we construct a mepping J : H— R extending Jo .

In this step H 1s assumed to satisfy the following conditions:
H 1is boundedly G -complete, G -continuous lattice &nd to every =xcH
there are a € A such that x = \/an - The initial mepping J_  is in-
creasing, J_ 1s a velustion (i.e. J (a) + Jo(b) = J (avb) + J (anb))
end J, 1is ugper»continuous (i.e. x €4, x+e A : xn/7x éiJo(x )’>Jo(x)).

Put A ={b€H;3an€A,an/'b},J tA—- R, J(p) =
= lim Jo(an). (Under previous assumptions this limit does not depend on
the choice of a .) Finally J*(x) = inf{J"(b) ;b2 x, be A" }.

J*® has also some nice properties, e.g. J* is upper continuous

=}

on H.,

2. In the second step we assume that there are given three bina-
ry operations & | + , N : HxH ~H satisfying some conditions. In
the set lattice case, AA B 1is the symmetric difference, A ~ B 1is the
difference end A + B 1is the union of the sets A , B . In the function
lattice case, f & g(x) = [f(x) - g(x)| , f£\g(x) = £(x) - min(£(x),
g(x)), £+ g(x) = £(x) + g(x) .

We use the following properties of the algebraic structure: H
has the least element O contained in A , A 1is closed under & , \ ,
+; ada=z0,8d40=a,aldb=bAdAa,a+b=b+a,andb <
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Z(asnce)+ (bace) ,(avb)a(cvd) 2(aac) + (bad), (anb)A
A(cnd) = (ade) + (bad), (a+b)a(ec+d) 2(aac)+ (bad),
(axb) A (cvd) %~ (aac)+(bad), a=(aab) +b for every a, b, ¢,
d¢H; if a““ b, then a+c<b+c,asb=b xa, a=b\(b\a) ;
if an/a , bn/’b y SN €y then an+bn/l a+b, an\b/'a\b ,
b\cn/7 bxc . J0 is assumed moreover to satisfy the following proper-
ties: J (0) =0, Jo(a + b) = Jo(a) + Jo(b) , Jo(b) = Jo(a/\ b) +
+ J (bNa) .

If we now put d(x,y) = J¥(x Ay) end Hy = {x ; J¥(x) <0},
then (Hl,d) is a pseudometric space containing A .

3. Finally we put S = A" (the closure of A with respect to d)
end J=J° AT .
4. Theorem. S 1is a sublattice of H closed under + anmd J
is an extension of Jo satisfying the following condi tions:
1. If x<y, x, y €8S, then J(x) € J(y) .
2. J(x) + J(y) = J(x vy) + J(x Ay) for every x, y€ S . -
3. If x €8S (n=1,2,...), x€H, x 7x (x \Vvx) and (J(xn))n=1
is bounded, then x € S and J(xn)”J(x) .

The classicel measure extension theorem and Radon meesure exten-
sion theorem follow immediately from Theorem 4. Of course, these two
examples are not the only ones.

5. Theorem. Let G be an Abelian lattice ordered group, which is
G -complete (i.e. every non-empty countable bounded subset of G has
the supremum end the infimum). Let F be a subgroup of G closed under
the lattice operations. Let there to every x € G exist aneF (n =
= 1,2,...) such that x<Va . Finaelly let I :F >R be a linear
positive operetor such that x 7 x, x € F (n=1,2,...), x €F,
implies Io(xn) — Io(x) .

Then there are a subgroup T of G conteining F and closed
under the lattice operations and a linesr positive operator I : T-7R
extending I and continuous in the followioglg sense: If x /X (xn\)x),
x, € T (n=1,2,...), xe G, end (I(x )) _, is bounded, then xe& T
and T(x) = lim I(x ) .

Similar results using different constructions have been studied
in 1] - (4] . A detailed elucidation of our results including proofs
will appear in the journal Mathemetica Slovaca.
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