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SEQUEUTIALLY COMPLETE SPACES 

R#FRl8 ABD V#KOUTfffK 

2ilina and Praha 

Sequentially regular convergence spaces, i#e# spaces in which 
convergence of sequences is protectively generated by classes of 
functions, and their sequential envelopes have been introduced by 
J#Novak at the First Prague Symposium C7J» This paper is devoted to 
the sequential completeness of sequentially regular convergence spa­
ces and extensions of sequentially continuous mappings. 

In notation and terminology we generally follow J#Nov6k[8]# 

Recall that a convergence space is a closure space (X, A ) (cf#dJ) 
where the closure operator is induced by a sequential convergence 
on X, i#e# A A ={ x|x » lim xn, U (x^) c A } # Let (Xfu) be a closure 
space* The convergence of sequences in (Xfu) is defined in the usual 
way, i#e# <•*-> converges to x iff each neighborhood of x contains x^ 
for all but finitely many n# The corresponding convergence closure 
for X will be denoted by A*u# The space (Xfu) is said to be F-sequen-
tially regular if the convergence of sequences in X is protectively 
generated by PcR 1, i#e# lim x^ « x iff lim ftx^) = f(x) for each 
f £ F# If F»C(X) f then we simply say that X is sequentially regular* 
A set A is sequentially closed in (Xfu) iff A A « A; it is sequenti-
ally dense in X iff A UA s Xf where A is the topological modifica­
tion of A, • A subspace (Yf v) of (Xfu) is said to be sequentially 
F-embedded in X if each f € FcC(Yf X, ) has a continuous extension 

?eC(l,A„). 
U 

Definiton 1# Let X be a closure space and FCBr. A sequenceOc > 
of points of X is said to be F-fundamental if for each f€F the sequen­
ce <f (X J ) > converges in R* 

Definition 2# Let X be a closure space and P e r , The space X is 
said to be F-sequentially complete if every F-fundamental sequence 
converges in X, If F « C(X)f then we simply say that X is sequentially 
complete. 
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Note that an P-sequentially complete space need not be P-sequen-
tially regular. R g f if P *= Brf then X is always P-sequentially com­
plete but X is P-sequentially regular iff it is discrete. 

Definition 3» Let X be a closure space and Pcir. The space X is 
said to have the property p with respect to P if 

(p) for eTery two sequences <a^a> and <Jn> of points of X such that 

^ V L ^ ^ n ^ n (AUL/ (yn)) « 0 there is a function f € P such 

that lim f (ar̂ ) « lim f (yn) does not hold# 

If P B C(X)f then we simply say that X has the property p# 

This property has been introduced in [3 J for conTergence spaces 
and PcC(X) # It has been studied in [2J in the special case when 
P m C(X)nEI

f where EcR* 
Let C c C(X)# The C -sequentially complete spaces are characte­

rized by the following theorem, where P-space stands for one of the 
following? closure space, conTergence space, topological space, se­
quential space# 

Theorem 4# Let X be a C - sequentially regular P-space. Then the 
following statements are equivalent* 

(i) X is CQ-sequentially complete* 

(ii) X has the property p with respect to C -

o 
(iii) X is sequentially closed in eTery P-space in which it is 

sequentially C -embedded* 
(IT) X is sequentially closed in eTery P-space in which it is 

C -embedded. 

Corollary 5» Let X be a completely regular space# Then the fol­
lowing statements are equiyalent# 

(i) X is sequentially complete* 

(ii) X has the property p# 
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(iii) X is sequentially closed in the Hewitt realcompactifica-

tion i/X of X# 

(iv) X is sequentially closed in the Sech-Stone compactifica-

tion/3X of X# 

The notion of P-sequential completeness generalizes several pre­

vious definitions of sequential completeness* For P = C(X) and X 

sequentially regular convergence space we obtain, ©^-completeness de­

fined in [6]# -Ejy Theorem 4 for Pc c(X) and X P-sequentially regular 

convergence (sequential) space we obtain C -sequential completeness 

defined in [2]# By Corollary 5 for P * C*(X) and X completely regu­

lar we obtain sequential completeness defined in [5L 

Now we shall consider C -sequentially regular convergence spaces* 

Since not all sequentially regular spaces are sequentially complete 

(see e#g#[8]) it is natural to consider a suitable sequentially com­

plete convergence space into which a given space can be embedded as 

a sequentially dense subspace# The following definition has been given 

by J.Novak in [9J# 

Definition 6# Let (L,/l) be a C -sequentially regular convergence 

space# A convergence space (Sf(T ) is said to be a C -sequential enve­

lope ^ 0(L) of (L,X) if 

(e-,) (Lf A ) is & sequentially dense C -embedded subspace of (Sf6
,)f 

(e2) (Sf(T ) is C0(S)-sequentially regular, where 

50(S) «{f€C(S)| f | L € C o } f and 

(OQ) there is no convergence space (S'f0') containing (Sf<T) as 

a proper subspace and satisfying (e-̂ ) and (e2) with respect 

to (LfA). 

The C -sequential envelope is unique in the sense that if S^ and 

S2 are C -sequential envelopes of Lf the there is a homeomorphism of 

S-̂  onto S2 that leaves Lpointwisefixed (Theorem 5 in [9]) and we 

write S-jaSg. 
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Theorem 7> Let (L, A ) be a C - sequentially regular convergence 

space* Then the following statements are equivalent
# 

(i) C5T
o
(L) « (I

f
 A ) . 

(ii) (L
f
 A ) is C - sequentially complete. 

Theorem 8» Let f be a continuous mapping of a C-,(L)-sequential-

ly regular convergence space (L
f
 A ) into a C

2
(M)-sequentially regular 

convergence space (M
f
/6)« If ̂ oC

2
(M) c c^(L)

f
 then there is a continu­

ous mapping (f of (T-^L) into G~
2
(M) such that <f\h* U) and the diagram 

Іdl 

^ ( L ) - J__ 

— - м 
Іd 

•<r
2
(м) 

commutes* 

For MaL
f
 c^»id we obtain Theorem 6 in [9 J as a special case. 

From Theorem 7 and Theorem 8 we obtain the following 

Corollary 9# Let ^ b e a continuous mapping of a C
1
(L)-sequenti-

ally regular convergence space (L
f
 A ) into a C

2
(M)-sequentially regu­

lar convergence space (M
f/
rft>) and let the space (M

f
/6) be C

2
(M)-sequ-

entially complete* If ^°C
2
(M) cC-^L), then there is a continuous 

mapping <J> of 6-±(1*) into M such that ^|L * <f and the diagram 

commutes* 

The proofs and details will appear elsewhere [4]* 
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