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CHARACTERIZATIONS OF SUPERCOMPACT SPACES 

A. SCHRIJVER 

Amsterdam 

1. Following DE GROOT [6], a topological space X is called supercompaot if 

X has a so-called binary subbase, that is a subbase S such that if S'<^$ 

and nS' - 0 then there are S. and S2 in S' with S nS. * 0. (Here and in 

the sequel each subbase is supposed to be a subbase for the closed sets.) 

Using Alexander's subbase lemma it is clear that each supercompact space 

is compact. Also it is easy to prove that the product of supercompact 

spaces is again supercompact. Not every compact Hausdorffspace is super-

compact, since BELL [1] proved that $1N is not supercompact (cf. [4]). 

Examples of supercompact spaces: 

(1) Compact orderable spaces (binary subbase: the collection of closed 

intervals); and more generally: 

(2) Compact lattice spaces (binary subbase: the collection of closed 

intervals); 

(3) Compact treelike spaces (a space X is treelike if X is connected and 

for each two different points there is a point separating them; 

binary subbase: the collection of closed connected subsets; cf. 

[3,9,10]); 

(4) Compact metric spaces (STROK & SZYMANSKI [11]). 

Also products of the examples give supercompact spaces. 

2. A first characterization of supercompactness uses the notion of an inter­

val structure. An interval structure on a set X is a function 

I: X x X + P(X) such that: 

(i) Vx,y£X: x,yel(x,y), 

(ii) Vx,y,u,veX: u,vel(x,y) implies I(u,v) cl(x,y), 

(iii) Vx,y,z€X: I(x,y) nl(x,z) nl(y,z) f 0. 
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A subset S of X is called I-convex if I(x,y)c.S for all x,yeS. Using a 

result of GILMORE [5] (cf. [2] p.396) the characterization is as follows. 

THEOREM. A space X is supercompact if and only if X is compact and there is 

an interval structure I On X and a subbase S for X such that each set in S 

is I-convex. 

In the first three examples of section 1 we can take as interval structure 

the obvious intervals: 

in (1) : I(x,y) = [x,y] if x < y, 

I(x,y) = Cy,x] if x > y; 
;.n (2) : I(x,y) -= [xAy,Xvy]; 

in (3) : I(x,y) =- {x,y} u {z|z is a point seperating x and y}. 

3. The second characterization needs the notion of a graph. A graph G is a 

pair (V,E), where V is a set and 

E c {{v,w} | v,weV, v i- w} 

(cf. [2]). 

A subset V* of V is stable if {v,w} \ E for all v,weVT, and maximal 

stable if V is stable and not contained in another stable subset of V 

(by Zorn's lemma each stable subset is contained in a maximal stable 

subset). 

Now define successively: 

1(G) = {V'cv|V! maximal stable}; 

By = { V ^ K O l v e V } , for each veV; 

B(G) == {Bv |veV}. 

B(G) is a collection of subsets of 1(G). Let T(G) be the space with 

point set 1(G) and subbase B(G). We call T(G) the stability space of G. 
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The following theorem is due to DE GROOT [7]. 

THEOREM. A space X is T and supercompact if and only if X is (homeo-

morphic to) the stability space of a graph. 

Special classes of supercompact T.-spaces can be characterized by being 

the stability space of special graphs: 

( 1 ) A space X is compact orderable if and only if X is (homeomorphic to) 

the stability space of a connected comparable graph (a graph 

G -= (V,E) is connected if for each two v,weV there are v.,...,v 

in V such that 

{v,v.},{v1,v2},...,{vn,w} e E; 

G is comparable if from 

{v.,v2},{v2,v3},{v3,v4},{v4,v5} e E 

it follows that {v,,v,} e E or {v^v..} e E). 

A space X is a product of compact orderable spaces if and only if 

X is (homeomorphic to) the stability of a comparable graph (this 

follows easily from the foregoing characterizations; cf. [8]). 

(2) A space X is a compact lattice space if and only if X is (homeo­

morphic to) the stability space of a bipartite graph (a graph G * 

(V,E) is bipartite if V is the disjoint union of two sets V. and V« 

such that 

E c {{v,w} | V€Vj,weV2}). 

(3) For a graphical characterization of compact treelike spaces see [10], 

(4) A Hausdorff space X is compact metrizable if and only if X is (homeo­

morphic to) the stability space of a countable graph (this result of 

DE GROOT [7] is based on STROK & SZYMANSKI's theorem [11] that each 

compact metric space is supercompact). 

For proofs and more details we refer to [10]. 
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