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RELATIVL COMPACTNESS AND RECENT COr-̂lOtSf GENERALIZATIONS OF 

METRIC AND LOCALLY COMPACT SPACES 

Z. EALOGH 

Debrecen 

Introduction 

By assumption of a "good" connection between compact subsets and 

the topology of a space, a number of new classes of topological spaces 

nave been introduced and investigated in the last fifteen years. 

Spaces obtained in this way are p-spaces of Argangel'skii (see [7 J J, 

paracompact p-spaces (or paracorapact M-spaces j invented independ­

ently by the Moscow and Japan school of point set topology, spaces of 

first-countable type (see[2j, e.g.], spaces with small K~bases (see 

[l3j/, and others. 

It seems that most of the results obtained for the above-mention­

ed classes can be extended and unified by using a simple and natural 

idea, which is relative compactness. We say that a topology 7r defined 

in a non-void set J\ is compact relative to a topology f in y( if 

each ultrafilter which is convergent in 7T is also convergent in t~ • 

The aim ,of this note is to make a brief summary of our results 

concerning relative compactness. § 1 contains introductory results. 

32 and C>3 are devoted to topics which are motivated by important results 

concerning the classes mentioned, in the first sentences of our intro­

duction. In §4 we solve a problem of Arhange l ' sk i .£ (affirmatively, 

under CH/# by proving even a more general result concerning relative 

compactness. Finally, in §5 we obtain from the results of §2-§4 a 

number of known and unknown results as corollaries for p-spaces, 

K-bases etc. 

Remarks on terminology and notation. Throughout the paper X de­

notes an infinite cardinal. Regular spaces are supposed to be Tw 

spaces. The use of the generalized continuum hypothesis will be denoted 

by GL H • Given a topological space\J\fC), and a subset n of J\ , 

Ci^n denotes the closure of n in f . If A is fixed then we shall 

sometimes say that f has a certain property instead of telling that 

(y\,'Cj has that property. 

1§. Some properties and examples of relative 

compactness 

First we recall some definitions. The Lindelof degree of a topo­

logical space\J\i*C)is the smallest infinite cardinal K such that 



38 

every £" -open cover of A contains a subcover of cardinality ^ K . 

The paracorapactness degree of ( A | W is the smallest infinite cardinal 

X such that each t~-open cover of A has a T" -open refinement which 

is the union of at most X locally finite families of(A|W. (See [l4J.) 

itfote that a regular space is paracompact if and only if its paracora­

pactness degree is OJ. ( See [llj.j A collection | (A I . l£ljof open cov­

ers of a topological space (Aft) is called a pluming for(y(|T)if the 

following holds: if X 6 Gv ̂  C/rl f°r all L in I then 

(a ) ^X ^ li tCit: G^ • 6 € I J is compact in '£" ,< 

(b ) { fl[Ctr Qi : c £ JJ : J is a finite subset of I j 

is a "base" for C v ' i-e« given any open subset (X containing Lv; 

there is a finite subset J. of J with ll{Ct^G^ : CfJjC-Z U. . 

(see L9J*/ I n L 7J it: i s s n o w n that a regular space is a p-space in 

the sense of Arhangel'skiif [lj if and only if it has a_ pluming 

{(Jji' L-G I] with [Ij^UJ . A cover Jj> of a space (X{t) is called a 

K-net f o r ( y V t ) i f for each point X in A , there exists a compact 

subset Cx o f \A|W such that for every t -neighbourhood V o f C)(, 

there is a member D in dt> with X € O*-- v. A 17-open K-net is 

called a K-basis for(A|W- ( See [l3j./ 

Lemma 1.1. Let t and t" be two topologies defined in the same 

non-void set A • Then the following conditions are equivalent. 

(i) Every ultrafilter, which is convergent in f , also converges 

in IT (i.e. IT is compact relative to 7T/. 

(ii)Every filter-base, which has a cluster point in T~ , has a 

cluster point in t , too. 

(iii) For every £* -open cover \JV of A t and for every point 

X in A / there is a t -neighbourhood of X which is covered by a 

finite subfamily of \Jy . 

Theorem 1.2. Let {[X 'L {t i.) : L G 1 J and { (X I \ ^i ' : L ^ *• J 

be families of topological spaces such that tr is compact relative 
\ ^ T 

to t> for all L in J . Then the topology of the product 
xf(X * T'):<.tl]is c o m P a c t relative to the topology of ̂ {{A^T^')-1£[ J. 

Theorem 1.3. Suppose that the topology of a space (A/C)is com­

pact relative* to a topology t" in A . Then the Lindelof degree of 

7? does not exceed that of f . Moreover, if V is weaker than t* 

then the paracompactness degree of T? does not exceed that of T" . 

Proposition 1.4. Let if be a K-net for a topological space 

V A j W , and let t be the topology in A which is generated by &J as 
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subbase. Then *C is compact relative to C 

Proposition 1.5. Let |t/^L • i £l J be a pluming for a topological 

space\J\fC), and let C be the topology in J\ which is generated by 

as a subbase. Then C is compact relative to 

r\ 
22- Extension of a theorem of J.Nagata to relative 

compactness 

Vie beginn with some definitions. The metrizability degree of a 

topological space (A (C) is the smallest infinite cardinal X such 

that {j^.C) has an (open) base which is the union of at most K lo­

cally finite families of (AjC). By virtue of the classical -iagata -

wSmirnov metrization theorem regular spaces with metrizability degree 

(jj are exactly the metrizable spaces. ( For a discussion of the metri­

zability degree see Model's paper [llj.) Let j \ be non-void set, let 

[Ji be a family of subsets of A • Let us define the pointwise cardi­

nality of Uy as the smallest infinite cardinal X such that every 

element of A is contained in at most K members of \Jy . \JV is said 

to be point-countable if it has pointwise cardinality UJ . Finally, 

let us call a cover Lty of a topological space (AJX') separating (resp. 

strongly separating / if for every pair of distinct points X x y in A , 

there is a G in L l j with X £ G,y £G (resp. with X 6b{ y ^Ctf G). 

The aim of this paragraph is to extend the following theorem of 

J.Nagata to relative compactness(in Theorem 2.2/: Every paracompact 

p-space with a point-countable separating open cover is metrizable. 

(see [l6J.For an interesting story of how this result was developed 

step by step by several authors see R.E.Hodel [llj who has extended 

it to higher cardinality. ) _\fote, further, that paracompact p-spaces 

( or paracompact H-spaces ) are exactly the spaces having a perfect 

map onto a metrizable space. ( See [lJ-/ 

Lemma 2.1. Let us suppose that the topology of a space \A|T/ is 

compact relative to a weaker topology C in A with metrizability 

degree .___? X r and that there is a separating C" -open cover (resp. a 

strongly separating C -open cover, resp. a baseyfor(A|t lof point-

wise cardinality ̂  X . Then there is a separating f -open cover 

(resp. a strongly separating t* -open cover, resp. a base/ for(A,/C/ 

which is X -locally finite in C . 

.(Xr)i. Theorem 2.2. If the topology of a regular space\JK\L] is compact 

relative to a weaker topology t in y\ with metrizability degree 
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< ) ( , and(A/W has a separating open cover of pointwise cardinality 

^ yr thenfX/ w has metrizability degree -^ X • 

For regular spaces, the following result is a corollary of Theo­

rem 2.2. 

Theorem 2.3. If the topology of a Hausdorff space (A i^/ is com­
pact relative to a weaker topology t" in A of weight ̂  K , and 
(X,t) has a separating open cover of pointwise cardinality ^ H 
then (X, f/ nas weight ̂  X . 

3.§. Concerning the preservation of the tightness, character and 
weight of topologies under hereditary assumptions 

Recall that the tightness of a point X in a topological space 
(AjT/f denoted T(X|A,t/, is defined to be the smallest infinite 
cardinal X such that for every subset f\ of A with X 6 Ctf M , 
there is a subset n{ of n with \A^\^Y( and X € Clf n{ . The 
pseudocharacter of X iniAj'C/, denoted ^(X{A.^C), is the smallest 
infinite cardinal X such that there is a family n of T-open 
subsets with \rT(^ X and I I H ~(Xj. Denote by X(X{XfC) the character 
of the point X inlA/'w. Denote by X\jk{^) the character of(X,W/ 

i.e. x(X,v)m sup f # ( x , X , r ) . xeX}- i^X,r)andY(X,r) 
can be defined similarly. 

The two main results in this paragraph are Theorem 3.2 and 
Theorem 3.5. 

Lemma 3.1. If the topology of a regular space (A,V) is compact 
relative to a weaker topology V in A then v 

tlx.X.triievix.X.vhKx.X,*) M 
*(x,X,r)s? v fx .X. t ) -Xfx.X.rV 

for every point X in X . 

Theorem 3.2. Let(A| W he a regular space, let X be a point 

in A • Suppose that the topology of every subspace ( Y |^Y' con~ 

taining X is compact relative to a weaker topology T^y in * with 

t( x-,T,'JrY-)~K'Then tOc.X.r teX. 
Corollary 3.3, If the topology of each subspace ( Yj^y/of a 

regular space (Xj'w is compact relative to a weaker topology 2Ty 
in Y with i(Y, Vy)^)(then (X{t) has tightness ̂  X . 

If the topology of each subspace of a regular space (A, f ) is 

compact relative to a weaker first countable topology then(A fC) need 
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not be first countable. ( A suitable counter-example is the one-point 

compactification of any uncountable discrete space.) However, the 

following result can be deduced from Theorem 3.2. 

Theorem 3.4.(GCH). Suppose that the topology of each subspace 

\ Y . TTY / o f a regular space(Ajf/ is compact relative to a weaker 

topology 'T'Y i n Y with X(Y\Vy)^ K . Then there is a Z"-open 

subset Y of (Aj^T/such that Y" is dense in(A|^/ a*-d X\ jj f A fV)^X 

for each U in Y • 

Theorem 3.5. Suppose that K ==• U) or Z =" n . Then if the to­

pology of every subspace ( i,Ty)of a regular spacelAj^/ is compact 

relative to a weaker topology t* y in Y of weight ^ K then(X.tV) 

has weight ^ K • 

4§. On a problem of Arhangel'skii 

It was posed in Arhangel'skii [4̂ ] wether a space, each subspace 

of which is a paracompact p-space, contains a dense metrizable sub-

space. We have solved this problem affirmatively, if C H holds 

(Corollary 5.7.1/. However, a more general theorem is valid, which 

is announced in this paragraph as Theorem 4.2. 

Lemma 4.1. Let (A \t/ be a regular space with character t^n 

and metrizability degree •*£ K . Suppose that the topology of every 

subspace ( Yj^Y / 0 f V A j ^ / i s compact relative to a weaker topology fy-

in Y with metrizability degree ̂  K . Then (A1 W contains a dense 

subspace with metrizability degree^f K . 

Theorem 4.2. (GCH). Suppose that the topology of every subspace 

[ X jTTy/of a regular space (A fC) is compact relative to a weaker 

topology f y in I with metrizability degree «S K. Then (A jW contains 

a dense subspace with metrizability degree ^ K . 

55- Corollaries 

Denote the weight, Lindelof degree, paracompactness degree, and 

metrizability degree of a topological space (A,17/by {Jjr[X. , t/j L(A/ W 

pcLvAjW and Hl(Ai W * respectively. Recall that the Sous 1 in number of 

(A,T)' denoted C ( X | W ' i s t n e smallest infinite cardinal X such 

that every family of pairwise disjoint f-open subsets has cardinality 

:._= K . The point separating weight of (J\ t ) , denoted pSl/J^^) , is 

defined to be the smallest infinite cardinal V( such that ( A V) has 

a separating open cover of pointwise cardinality ^ K . (See [9] .) 
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The pluming degree of a regular space, denoted P M A , C/, is the 

smallest infinite cardinal X such that (jY^Cl has a pluring 

{Vji: C^T] with | l | ^ X . ( See [9], too.) The K-weight of ( X ^ ) , 

denoted KuJlA, w , is the smallest infinite cardinal X such that 

( .A/E/has a K-basis of cardinality ^ X . [See [l3].j Let us say that 

(Xi'Zr)is of point-K type if for every point X of A » there is a 

subset C of A containing X such that C is compact in 17 and 

has character^X i n f*- Spaces of point-Cu) ' type are called spaces of 

point-countable type. Finally, if -f(X,w is a cardinal invariant then 

write f*-{X/*r) = SUpf|(XrY).
,(firy)i3 a subspace ofOC.tr)J. . 

In order to obtain corollaries to our results, Proposition 1.4 

and 1.5 are useful. 

Corollary 5.1. If a regular spaceI .A {C) has a K-basis which is 

the union of at most X locally finite families of(/\j£/ , and 

D S U X A J T / ^ X then ( A .T/ has metrizability degreed X . 

Corollary 5.2. ( Hodel fill./ If \X(C) is a regular space then 

m(X,r)-= ^(X,r)-pa(X,r)-psuja>). 
Both of the above corollaries follow from Theorem 2.2. 

Corollary 5.2.1. (Hodel L9j .) IflAjTjis a reqular space then 

U7(X lr)-=p^X)f) 'L(X1r)'psuj(X1r), 
Corollary 5.2.2. (Nagata[l6] ./ A paracompact p-space with a 

point-countable separating open cover is metrizable. 

Corollary 5.3. (GCH) If each subspace of a regular space(A | W 

is of point- K type then there is a f -open subset Y of X such 

that Y is dense iniXfC) and £ (y j X j ^ ^ X f o r e a c h \j i n Y'• 

For X^lt), this result is proved in Arhangel'skilif [4 J. We deduced 

this result from our Theorem 3.2. 

Corollary 5.4. (juhasz Cl3j .) Suppose that X-UJ or 2 — K . Then 

if each subspace of a regular space (.Ait/ has K-weight ^ K then 

(XfC) has weight -< X . 

Corollary 5.5. (Hodel ElOj J LetUCj'E/ be a regular space. Then 

ur(X(tr)= iXXtf-pftX,?) if for M--LtX)r)ptfUf) 
either K stJ or ^K=r)(+holds. 

The two above corollaries follow from Theorem 3.5. 
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Corollary 5.5.1. (Rodel [lOJ ./ Let(AjC/ be a topological space, 

and suppose that for )i~C\A{Ueither K-s Co or 2 = n holds. Then if 

each subspace of t/L'w is a paracompact p-space then C (A, L )!zxuJ"(Ji^L/0 

Corollary 5.6. (GCH) If each subspace 1 I j t^Yl of a regular 

space(A/'C/ has a K-basis which is the union of at most Vf locally 

finite families of ( Y iTV/then ( A / W has a dense subspace with metri-

zability degree < K. 

Corollary 5.7. (GCH) If for each subspace[ Yj^Y/of a regular 

sp*" (x ' r ) ftiy.vrl-ptiY.TrUx ^ ^ 
contains a dense subspace with metrizability degree ^ H . 

Corollary 5.6 and 5.7 follow from Theorem 4.2. 

Corollary 5.7.2. (CH; Every space, each subspace of which is a 

paracompact p-space, contains a dense metrizable subspace. 

As we have already indicated the last corollary answers Problem 4 

in Arhangel'skiY [4J, affirmatively. 

The proofs will appear in [5J and [6 J. 
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