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RELATIVL COHPACTIHIESS AND RECENT COmiION GENERALIZATIONS OF
METRIC AND LOCALLY COMPACT SPACES

Z. EALOGH
Debrecen

Introduction

3y assumption of a "good" connection between compact subsets ancd
the topology of a space, a nunber of new classes of topological spaces
nave been introduced and investigated in the last fifteen years.
Spaces obtained in this way are p-spaces of Argangel’ sk11 (see [7])
paracompact p-spaces (or paracompact H—spaces) invented independ-
ently by the lMoscow and Japan school of point set topolpgy, spaces of
first-countable type (see[Z], e.g.), spaces with small K-bases (see
[13]), and others.

It seems that most of the results obtained for the above-mention-
2d classes can be extended and unified by using a simple and natural
idea, which is relative compactness. We say that a topology 7 defined
in a non-void set )( is compact relative to a topology 27\ in _)( if
each ultrafilter which is convergent in 77\ is also convergent in T .

The aim ,0f this note is to make a brief summary~of our results
concerning relative compactness. § 1 contains introductory results.
32 and {3 are Gevoted to topics which are motivated by important results
concerning the classes wmentioned in the first sentences of our intro-
duction. In §4 we solve a problem of Arhangel'skiY (affirmatively,
under Cf{), by proving even a more general result concerning relative
compactness. Finally, in $5 we obtain from the results of £2-54 a
nurmber of known and unknown results as corollaries for p-spaces,
K-bases etc.

Remarks_on terninology and notation. Throughout the paper N de-

notes an infinite cardinal. Regular spaces are supposed to be FTZ
spaces. The use of the generalized cbntinuum hypothesis will be denoted
by GC H . Given a topological space( ,'E' , and a subset A of ’
CﬁjA dernotes the closure of in T . 1f is fixed then we shall
sometimes say that T has a certain property instead of telling that
CK'ZO has that property.

1§. Some properties and examples of relative
compactness

First we recall sone definitions. The Lindellf degree of a topo-
logical space(}(,zf is the smallest infinite cardinal X such that
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every C -open cover of X contains a subcover of cardinality < M.
The paracompactness degree of (XI/C) is the smallest infinite cardinal
Y such that each T -open cover of _X has a T -open refinement which
is the union of at most M locally finite families of( ,t). (See [14])
Jote that a regular space is paracompact if and only if its paracom-
pactness degree is (W. (See [l}]) A collection {U}L . LGI of open cov-
ers of a topological space (X,T’) is called a pluming for(XfC)if the
following holds: if X € G‘:e ( for all ( in 1 then

(a) CX:n{Cf'CGL.‘(:éI is compact in T ;

(1) { ﬂ{ce’t‘ GL : (—‘6]} : J is a finite subset of I}
is a "base" for X i.e. given any open subset u, containing Cx,
there is a finite subsetJ of I with ﬂ {C('c' G(‘_-‘ LE]}C u
(See [9]) In [7] it is shown that a regular space is & _p-space in
the sense of Arhangel’skiY [l] if and only if it has a pluring

. {U}L: LE I} with \I’S(.,U . A cover O@, of a space()(_,?:) is called a

K-net fOl‘(X,'t) if for each point X in X , there exists a compact
subset CX' of (X{U) such that for every T -neighbourhocd V of Cx,
there is a member B incf; with X€R<V. a T -open K-net is

called a X-basis for(X'T). (See [13].)

Lenma 1l.1. Let T and ’Z'\ be two topolcgies defined in the same
non--void set X . Then the following conditions are equivalent.

(i) Every ultrafilter, which is convergent in ’L'\, also converges
in T (i.e. T is compact relative to ’t'\ .

(ii)Every fiiter—base, which has a cluster point in "C'\ , has a
cluster point in T , too.

(iii) For every T -open cover (_4 of X , and for every point
X in A , there is a ’Z,“\—neighbourhood of X which is coverea by &
finite subfamily of U} .

- . : .
Theorem 1.2. Let{(X[_"tL'): LE I} and {(XL |Ti)' L€ I}
be families of topological spaces such that ’L‘C is compact relative

to T:l: for all ( in I . Then the topology of the product \
X{(XL "[_'L-): [QI}is compact relative to the topology of >({O<£"EL‘).‘L€]}_

Theorem 1.3. Suppose that the topology of a space (X!'t) is com-
pact relative'to a topology ’C\ in . Then the Lindel6f degree of
T does rnot exceed that of ’C’\ . Moreover, if ’C'\ is weaker than T
then the paracompactness degree of T does not exceed that of ’C"\.

\
Proposition 1.4. Let 19‘ be a K-net for a topological spacs
( ,'C), and let "C,‘\ be the topology in X which is generated byo(?’ as
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a subvase. Then T is compact relative to T°° .
Propcsition 1.5. Let {(./J/(_ : L€I] be a pluming for a topological

space(XlT), ané let ’C\ be the topology in which is generated by
C:}: U {L}}L L€ I} as a subbase. Then T 1is compact relative to

.

l\.)

3. Extension of a thzorem of J.ilagata to relative
cormpactness

we beginn whtih some definitions. The metrizability degree of a

topological space {X.T:) is the smallest infinite cardinal M such

th at X (,) has an (open) base which is the union of at most W lo-
cally finite famnilies of X T) By virtue of the classical Jagata -
Sairnov netrization theorem regular spaces with metrizability degree
W are exactly the metrizable spaces. (For a discussion of the metri-
zability degree see Eodel's paper [11].) Let X be non-void set, let
U} ve a family of subsets of . Let us define the pointwise cardi-

nality of (4/ as the swallest infinite cardinal W such that every
eleinent of is contained in at most Y members of {4/ . (/} is saicd
to be point-countable if it has pointwise cardinality W/ . Finally,
let us call a cover (_[]r of a topological space (X ’E’) separating (resp
strongly separating ) if for every pair of distinct points X ‘-:] ’
there is a G in (J} with Xéclyés(resp. with X € C' 'j(fC[’(jG)

The aim of this paragraph is to extend the feollowing theorem of

J.Nagata to relative compactness(in Theorem 2.2): Every paracompact
p-space with a point-countable separating open cover is metrizable.
(See [16].For an interesting story of how this result was developed
step by step by several authors see R.E.Hodel [11] who has extended
it to higher cardinality.) ~ote, further, that paracompact p-spaces
(or paracompact M—spaces) are exactly the spaces having a perfect

map onto a retrizable space. (See [l

Lemma 2.1. Let us suppose that the topology of a space (Xﬂ:) is
conmpact relative to a weaker topology T in with metrizability
degree =< }'( , and that there is a separating 7 -open cover (resp. a
strongly separating T -open cover, resp. a base) for Xt) of point-
wise cardinality =<< W . Then there is a separating ‘" -open cover
(resp. a strongly separating 7 -open cover, resp. a base) for(Xl’C')
T

which is W -locally finite in

Theorem 2.2. If the topology of a regqular space(Xl't) is compact
relative to a weaker topology ’Z'\ in with metrizability degree
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= W, and(X,r‘:) has a separating open cover of pointwise cardinality
<X then(X,'Z"} has metrizability degree << M .
T =

For regular spaces, the following result is a corollary of Thec-
rem 2.2.

Theorem 2.3. If the topology of a Hausdorff space (X ,t’) is com-
pact relative to a weaker topology ’(':‘\ in X of weight =< )¢ , and

( ’C) has a separating open cover of pointwise cardinality == N
l L
then (X,'C') has weight =< /( .

3.§. Concerning the preservation of the tightness, character and
weight of topologies under hereditary assumptions

Recall that the tightness of a point X in a topological space
(X"C'), denoted ‘t(x., (t), is defined to be the smallest infinite
cardinal A such that for every subset A of_X with X & Cl’tA ,
there is a subset A4 of A witn ,Adé)’( and X € C(’C’ Ai . The
pseudocharacter of X in(X,'C),denoted ’\}/(X,'X"C' , is the smallest
infinite cardinal ) such that there is a family of T -open
subsets with n(“é)'( and nw={X} Denote by XO(IXIT) the character
of the point X in (X,’C') Denote by X(Xﬂl’) the character of(X ),

te. (X, T)= sup {2(X, X,T): xe X F. HX,T)ana y(X,T)

can be defined similarly.

The two main results in this paragraph are Theorer 3.2 and

Theorem 3.5.

Lemma 3.1. If the topalogy of a regular space (X,t) is compact
relative to a weaker topology "C’\ in then

tx, X, v)= wix, X,T) t(x, X,T)
'x,(X,X,’t'p%é v (X, X, T) - 2(x, X, T)

and
for every point X in .
Theorem 3.2. Let(Xl’t) be a regular space, let X be a point

in . Suppose that the topology of every subspace ( ! ,'tY) con-
\
taining X 1is compact relative to a weaker topology ’C’Y in Y with

t(x, Y, Ty)= W men t(x, X, T)=K. |
Corollary 3.3. If the topology of each subspace (Y, ’UY) of\a
regular space ( X,’U)\ is compact relative to a weaker topology ’C’Y

in Y with ":(Y, TY)SXthen(X‘T) has tightness < M .

If the topology of each subspace of a regular space(X,'C') is
compact relative to a weaker first countable topology then(X ,’C) need
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not be first countable. (A suitable counter-exawple is the one-point
compactification of any uncountable discrete space.) However, the

following result can be deduced from Theoren 3.2.

I'heoreiu 3.4.(GCI;). Suppose that the topology of each subspace

(Yl ’C'Y)of\a regular space(X,t) \is compact relative to a weaker

topology ”C'Y in Y with x(Y, "(:Y)é W . Then there is a C -open
* o . *. .

subset of (X,'C') such that Y 'is dense in (X-‘t') and X(E’,X,T:)SK

for each y in Y*

Theorem 3.5. Suppcse that M =) or 2%.: }'(+. Then if the to-
polcgy of every subspace (Y, Ty)of a regular space(X,t) is compact
relative to a weaker topology ’E'\Y‘ in of weight << )’( then(X,rC')
has weight << Y.

45. On_a problem of Arhangel’skiY

It was posed in Arhangel'skif [4] wether a space, each subspace
of which is a paracompact p-space, contains a dense metrizable sub-
space. We have solved this problem affirmatively, if C H holds
(Corollary 5.7.1). However, a more general theorem is valid, which
is announced in this paragraph as Theorem 4.2.

Lemma 4.1. Let (X,t) be a regular space with character = n
and metrizability degree =< W Suppose that the topology of every
subspace (\[,'C'Y)of(xif) is compact relative to a weaker topology ’C’l}
in with metrizability degree =< )’( . Then(XlT)contains a dense
subspace with metrizability degree =< u.

Theorzm 4.2. (GCH). Suppose that the topology of every subspace

(Y,T:Y) of a regular space(X,T) is compact relative to a weaker

\
topology TY in with netrizability degree =< )’( Then( ,’C') contajns
a dense subspace with metrizability degree =< .

55. Corollaries

Denote the weight, Lindeldf degree, paracompactness degree, and
retrizability degree of a topological space(X"C’) by W(X,t),L(Xl T:)
P&(X,T:) and m(X-'T), respectively. Recall that the Souslin number of
(X,’C’), denoted C(Xl't'), is the smallest infinite cardinal Y such
that every family of pairwise disjoint 7T -open subsets has cardinality
=< N . The point separating weight of(X"L'), denoted PS‘(U'(X‘T:) , is
defined to be the smallest infinite cardinal W such that(X' t‘) has
a separating open cover of pointwise cardinality = n . (See [9] )
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The pluming degree of a regqular space, denoted P('(.X ), is the

smallest infinite cardainal W such tI"at X ’C') has a plurinc

{UJL (,éI} with lIl< X (bee [s], toc. ) The K-weight of (.X T) .
aenoted KLU'X T , is the smallest infinite cardinal X such that

(X T)has 2 K-basis of cardinality =< W . (See [13].) Let us s&y that
X T,')J.s of point-K type if for every point X of X , there is a
suuset C of X containing X such that C is compact in T anc
has characterws ) in T. Spaces of point-W type are called sraces cof

point-countable type. Finally, ifi(X,f is a cardinal invariant then

write »‘I*O("Z')=SuP{£(Y,fy)I(Y'tY)is a subspace of‘X,Tf)}.

In order to obtain carollaries to cur results, Proposition 1.4

and 1.5 are useful.

Corollary 5.1. If a regular space X T)has a I\ basis which is
the union of at most X locally finite families of(X t , and

PSUJ'(XT:)‘}'( then( X T) has metrizability degree =< K

Corollary 5.2. (dodel ]-11] ) If(XT is a regular space then

m(X,T)=plX,T)-palX, T)- pswiX, ).

Both of the above corollaries follow from Theorem 2.2.

Corollary 5.2.1. (dodel t?] If(X’C’ is a regular sprace then

w(X,T)=plX,2) LX,T) pswiX,T

-

Corollary 5.z.2. ('\Iagata f16] ) A paracompact p-space with a
point-countable separating open cover is metrizable.

Corollary 5.3. (GCH) If each subspace of a regular space(X,t)
is of point- X type then there is a 7 -open subset Y of X such

that Y 4is dense in(Xl’C') and X(H,X,’t)éx for each Y in Y

For K-‘—(U, this result is proved in Arhangel’skiY [4] We deduced
this result from our Theorem 3.2. ’

o+
Corollary 5.4. (Juhasz [13] ) Suppose that A=W or 2 =X . Then
if each subspace of a regular space(_X T) has K-weight =< X then
(X "C‘) has weight = n.

Corollary 5. 5 (Hodel [10] ) Let X 77) be a regular space. Then

(X C L*(.X—’C) F?[ (X T} if for U= L*(X L) f*(X'E)

either N=w or 2Y=)tnholas.

The two above corollaries follow from Theorem 3.5.
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Corollary 5.5.1. (ﬁocel [10] ) Let(}( TT) be a topological space,
and suppose that for U= C(Xt)elther H=w or 2“ W' holds. Then if

eaci subspace of (X'C) is a paracompact p-space then C(X T)«-(,U'(XA)

Corollary 5.6 (Guh) If each subspace YrT:Y) of a regular
spacL JK'C' has a Kk-basis which is the union of at most W locally

finite families of (Yr Lyathen()('t has a dense subspace with metri-
zability degree=< W .

Corollary 5.7. (GCH) If for each subspace(‘(}zﬁr)of a regular

Space(Xl?) PK(YI th):pél(Y,TY)S)'( holds then

ccentains a dense subspace with metrizability degree =M.
Corollary 5.6 and 5.7 follow from Theorem 4.2.

Corollary 5.7.2. (CH) Every space, each subspace of which is a
paracompact p-space, contains a dense metrizakle subspace.

As we have already indicated the last corollary answers Proplem 4
in Arhangel’skiY [4], affirmatively.

The procfs will appear in [5] and [6].
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