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RAMSBY TOPOLOGICAL SPAČES 

J.NEŠETЙIL anđ V.RÖDL 

Praha 

In this communication we are interested in the following 

problems: 

Problem 1: Given a topological space (X,7") and a cardinal 

v- does there exist a topological space (Y,1L) such that 

for every mapping c: Y- *> }f there exists a topological 

embedding f: (XfT) *• (Y,lO such that c«f is a con­

stant mapping. 

Problem 2; Given a topological space (X,?*) and a well 

ordering ^ of X does there exist.a topological space 

(Y,Ti) such that for every well ordering -̂  of Y there 

exists a topological embedding f: (X,T*) * ( Y f l O which is 

also a mono tonne mapping (X,^) > ( Y , ^ ) . 

Both these questions belong to the generalized partition 

theory. In this note we sketch a background of these problems 

and then we state partial solutions and problems related to 

the above questions. 

Generalized partition theory is motivated by the following 

theorem of Ramsey [4] : 

For each choice of positive integers kf o( , y there exists 

a positive integer ID with the following property: for every 

mapping c: [/j]* = { b Q f t • IM x * } > f there exists 

a subset ck1 € ['Vl such that the mapping c restricted to 

the set [ot;] is a constant. (The mapping c is usually ca­

lled a colouring.) 
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Thi is one of the moэt applied combinatorial facts. 

Ram ey theorem may be used for counterexamples: the theorem 

tell that one cannot distribute k-element subset of large 

set in such a way that no homogeneou subset of a given ize 

occur . 

Ram ey theorem waэ geneгalized in many wayз. The tronger 

Ramsey type theorem we have the better example we may con-

truct. [l] | [2З and [зl are recent urveys of variou gene-

ralizationв of Ram ey theorem. 

Here we are intere ted in Ram ey type queэtionз related 

directly to topological pace . For this i be t to formulate 

Ram ey theorem in categorical term . Thi may be done aэ follow : 

Let X be a categorý, A, B it object , y a cardinal 

number. We ay that an object C of X iз (A« y*)-Ram ey for 

B if for every mapping c : X (A
f
c) V ү- there exi t 

a morphiэm f € X ( в
f
c ) and an t€^p эuch that c(f*g) = L 

for all g Є X(A,B) . 

( DC(A
>
в') ІЗ the set of all morphisms from A to B .) 

A 
This tatement ìэ denoted by B :v > C# 

ü ually, categorie are con idered with monomorphi m only. 

Tћen the ymbol B -̂  •-• C ha the intuitive mea-

ning of a "combinatorially strenghtened embedding
н
 • 

A an extremal ca e we ay that the category jC h 

A-partition property if for every B € X. and y there 

exi t CєX. uch that B — ->-C ; ЗC is aid to be 

Ratm ey if X- ha A-partition property for every A£ ЗC • 

Ramsey theorem tatea that in the finite set theory the 

category of all et and all 1-1 mapping is Ram ey. 
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It iә easy to ee that the categorieз of all topological 

spaces, metric pace , compact sp ces and other most frequent 

topological categories fail to Ъe Ramзey. The reason for thi 

i the fact that X 1 >• Y for no topological pace Y 

providing that the space X contains proper uЪ pace i omor-

phic to X • ( A proof i imple: Let (Ъ j Ъe the et of all 

topological uЪ paceэ of Y which are i omorphic to X. Con ider 

the et of all partial mapping c : (îj •»(oll^ which 

atisfy the following condition: if x'€ (í J and c(ҳ')
 І 8 

defined then there existэ Xv£ íyrj u c h t h a t X* f* X' and 

c(Ҳ
v
) / c(x') • Using Zorn's lemma there exi t a maximal -

with re pect to the inclusion - partial mapping c: QÍ ) > 

* í0*1^ with the aЪove property» One may check eaэily that 

c iэ defined on [TA • c violate the definition of 

X 1 * Y •) 

However for certain topological space the эituation i 

more promi ing. The following hold : 

Theorem 1: The cla of all topological pace ha 

1-point partition property. 

Explicitely: for every topological space X and a cardinal -̂

there exi ts a topological pace Y such that for every map-

ping c: Y
 =

 Cl / ^ )Г
 t n r e

 в-"-
0
*
8 a
 topological emЪe-

dding f: X -• Y uch that c«f i a con tant mapping* 

Thi an wers the ProЪlem 1. However we are unaЪle to an -

wer the same question for the class of all Hau dorff topo-

logical эp ceэ and space with higher eparation axioms • 

Perhaps the mo t natuгal que tion is the following: 

Unit interval pгoЪlem: I it true that I i —a-* I0** 

for a caгdinal ot ? (i iз the closed unit interval, 1 
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denotes the 1-point topological space.) 

Proof of Theorem 1 is provided by the following ex mple: 

Con ider the set Y = X** . For x° = (x° ; C < y ) £ Y, 

ß < ^- , and a neighborhoođ Uß of Xß def ine the set 

ü C x ° t U в ) bУ CXL * c < r) e u C x ° » % ) i f f X C = x t f o г 

L<ß , Xß t *ß € % t anđ x c € X for C > ß • Let 

the set Y be endowed with the topology given by the subbase 

neighborhoods of the form {x 0} U \J(u(x°»ufc) % ß < tfO • 

It i possible to prove X — ^ *> Y . (îћe detail are 

ч
 o 

gomg to appear el ewhere.) 

Concerning Problem 2 we do not have a imilarily general 

re ult. ü ing graph we can prove only: 

Theorem 2: For every finite metric pace (X, ҷ} there 

exi t a finite metric эpace C
ү
><^)

 8 u c h t h a t f o r
 every 

ordering (x,^) and ( Y , ^ ) there exist a mapping f:X ^ Y 

whieh i both a monotonne mapping (x,^) ^ C * » 0
 an(

* 

an embedđing (X,ç ) —*>(jГ,(Г) 

Thi theorem lead to the haгde t reэult of finite parti-

tion theory (ofcourэe finite metric pace may be identifieđ 

with graph ) , зee [2^ . 
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