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LOCAL BEHAVIOR IN SHAPE THEORY 

JACK SEGAL 

Seattle 

This is a report on some aspects of my joint work with 

G. Kozlowski which is to appear in a series of papers [8,9,10]. 

Although as originally conceived shape theory was designed to deal 

with global properties of metric compacta, we show that it is also re­

lated to the local properties of paracompacta. VJe prove that any LC 

paracompactum X of dimension <n is shape dominated by a polyhedron 

of dimension <n. From this and other results it follows that such an 

X is an ANSR (absolute neighborhood shape retract), thus providing 

a shape version of the classical result that an LCn compact metric 

space of dimension <n is an ANR. The importance of the classical 

result lay in the fact that it translated local homotopy property into 

information about extending maps. Our shape version likewise yields 

information about extending shape maps. 

We also generalize movability to arbitrary topological spaces as 

an extension of uniform movability and obtain a shape invariant which 

is strictly stronger than movability for ANR-systems. VJe show that 

every LC paracompactum of dimension <n is uniformly movable. 

The strength of our definition of uniform movability is illustrated by 

the theorem: If (X,x) is a uniformly movable pointed continuum with 

trivial shape groups then (X,x) has trivial shape. This theorem is 

not true if one uses the weaker forms of movability. For LC para­

compacta we also show that the shape groups and the homotony groups 

are naturally isomorphic. As an application of this we have the 

theorem: For metric spaces a proper map f :X -> Y of X onto Y 

such that f~ (y) is approximately k-connected (0 - k < n) for all 

y € Y induces for each x c X an isomorphism of the nth shape 

group of (X,x) with that of (Y,f(x)). 

1. Uniform Movability. In [1] Borsuk introduced the notion of 

movability for metric compacta. In [15] Mardesic and Segal general­

ized this notion to arbitrary compacta. Here we give a categorical 

description of this property which applies to arbitrary topological 

spaces and note it is a shape invariant. In fact, our version of 

movability is a generalization of uniform movability [16]. The 

reader is referred to [8] for a description of the natural 
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transformation approach to shape theory. This approach is essenti­

ally the same as that of Mardesic7 [13] except that he uses shape maps 

instead of natural transformations. One should note that a shape map 

from X to Y is a natural transformation from Hy to Hv (i.e., 

Morsh(X,Y) =- Transf(ny,nx)). 

Definition 1. A space X is said to be uniformly movable pro­

vided, that for each map f:X -»- P of X into a (possibly infinite) 

polyhedron P, there exists a polyhedron Q and natural transfor­

mations $:!"[ -> nQ,
 vF:nQ •* ITV such that vF$[f] - [f]. 

Remark. Since any natural transformation V: IIn -* Kv satisfies ^ A 

y = g' for a map (unique up to homotopy) g:X •> Q, the condition of 

the above definition can be stated: for each map f :X -> P there 

exist a polyhedron 0, maps g: X -> Q, c|): Q -»• P, and a natural trans­

formation '^'Ry- + NQ such that cf>g - f and $ [ f ] = [ <f>] . 

Theorem 1. For any space uniform movability implies movability. 

Tli cor eta 2 . If (X,x) is a uniformly movable pointed continuum 

the she 

Sh(X.x) = 0. 

with the shape groups TT (X,x) = 0, for all n > 1, then 

Corollary. The only uniformly movable compact connected abelian 

topological group with TT, (X) ^ 0 is 0. 

For an example which shows the converse of Theorem 1 is false 

and Theorem 2 is false if one uses movability instead of uniform 

movability the reader is referred to [9]. 

2. ANSE's and ANSR's. In this section we generalize the notion 

of extensor to the theory of shape for paracompacta. We also general­

ize the notions of FANR [2] and ANSR [14] to paracompacta. The 

starting point is the generalization of the neighborhood extension of 

maps to the neighborhood extension of shape rnorphlsms. The universal 

quantification of this property gives the concent of absoltite neigh­

borhood shape extensor (ANSE). 

Definition 2. We say Y is an absolute neighborhood shape 
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extensor for paracompacta (ANSE) if for any natural transformation 

$:nv "*• n*, where A is any closed subset of an arbitrary paracom-

pactum X, there is a closed neighborhood N of A and a natural 

transformation H?:IIV -*• nN such that pT = <3> (where P:nN -*• IIA 

denotes the restriction). In the ANR-systems approach this implies 

that any compactum Y is an absolute neighborhood shape extensor if 

any shape map f :A ->• Y can be extended to a shape map F of a closed 

neighborhood N of A in X. (Here F extends f means F i =. f 

where i is a shape map of A into N induced by the inclusion 

i:A + N.) 

We will also generalize the following description of absolute 

neighborhood retracts for compacta in shape theory due to Mardesid 

[14] to paracompacta. Mardesid1s definition was a generalization of 

Borsuk's [2] fundamental absolute neighborhood retracts (FANR's) to 

the compact Hausdorff case. Mardesid says that a compactum Y is a 

absolute neighborhood shape retract provided, for every compactum Z, 

Y c Z, there exists a closed neighborhood N of Y in Z, such 

that Y is a shape retract of N (i.e., there is a shape map 

r: N -*• Y such that r i * lv, where i: Y •*- N is the inclusion map). 

Definition 3. The paracompactum Y is said to be an absolute 

neighborhood shape retract (ANSR) if, whenever Y is a closed subset 

of a paracompactum Z, there exist a neighborhood N of Y in Z 

and a natural transformation ¥: nY •+ nN such that pY = ljj (where 

p: nN -*• nY is the restriction). (Every compact ANSR is an ANSR (in 
v 

the sense of Mardesid) since for any natural transformation $:IIV -*• nv 

there exists a map of systems f: X -*• Y such that fT = $.) 

Theorem 3. If a paracompactum Y is an ANSE then it is an ANSR. 

Theorem 4. A compactum Y is an ANSR (in the sense of Mardesid) 

iff it is an ANSE. 

Theorem 5. Any space shape dominated by an ANSE is also an ANSE. 

The following is a restatement in shape theory of a result of 

[11]. 

Theorem 6. Any polyhedron P is an ANSE. 
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3. Locally Well-behaved Paracompacta. In this section we des­

cribe how shape theory can be used effectively to deal with some local 

homotopy properties of paracompacta. Making use of the techniques of 

partial realizations we are able to obtain the following results. 

Theorem 7. Any LC paracompactum X of (covering) dimension 

<n is shape dominated by some polyhedron of dimension <n. 

Since any polyhedron with the metric topology is an ANR we have 

Corollary. Any LC paracompactum X of dimension <n is 

shape dominated by an ANR. 

Theorem 8. Any LC paracompactum X of dimension <n is an 

AJNSE and therefore an ANSR. 

Remark. Since an ANSR may behave badly locally there is no 

chance of extending the compact metric result, ANR ->• LC , to para­

compacta. On the other hand, an example due CW. Saalfrank shows 

that the compact metric result, at most n-dimensional and LCn -* ANR, 

cannot be extended to compact Hausdorff spaces. However, Theorem 8 

does extend it to paracompacta in shape theory, i.e., at most 

n-dimensional and LCn •* ANSR. 

In the next theorem uniformly n-movable is a stratification of 

uniformly movable (see [8]). 

•n — 1 

Theorem 9, Every LC ~ paracompactum is uniformly n-movable. 

(This extends Borsuk's result [4] in the compact metric case.) 

Corollary. Every LC " paracompactum of dimension <n is uni­

formly movable. (In the compact metric case this was first obtained 

by Mardes'ic* [12] and in [17].) 

4. Summary. We now summarize in diagram form the previous 

results and classical results on locally well-behaved compacta. An 

arrow (->-) indicates class inclusion and a broken arrow (-n-*-) indi­

cates class inclusion under the additional hypothesis that the dimen­

sion of the space in question is <n. Here SDP indicates a space 

dominated by a polyhedron. 
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Classically we have for metric spaces: 

(D LC
1
*- ANE «*ANR 
-n-> 

and for compacta: 

( I D LC n ANE ^ANR 

In shape theory we have for compacta: 

-,n 

( Ш ) 

LC 

I 
LC 

I 

n -•SDP* +ANSE* 

n-1 

uniformly n-movable_ ^uniformly movable 

and for paracompacta 

n *SDP •ANSE 

(IV) ,n-l 

LC 

1 
LC 

i _ 
n-movable u n i f o r m l y movable 

-+ANSR 

-*ANSR 

We do not know if ANSR -*> ANSE or if ANSE •*• SDP for paracompacta. 

The role of SDP has been investigated by Edwards and Geoghegan in 

[5] and [6], and Geoghegan and Lacher in [7]. 

5. Shape Groups and the Vie tor is Theorem. In [10] we define 

the nth shape group of a topological space X at x (denoted by 

X 
TT (X,x)) as the collection of natural transformations from n

v
 to 

—n
 x 

n<-n with addition defined as follows: 

($ + ¥)[f] = $[f] + y[f] 

where f: X -+• P, a polyhedron, the last addition is in IIsn(P) and 

we are working in the pointed case. The relation with the homotopy 

groups TT (X,x) given by [<)>]-• <f> for a map <f>: Sn -+ X is a 

homomorphism. 

Using partial realization techniques we prove the following 

result. 

Theorem 10. For LC paracompacta TT (X) is naturally isomor­

phic to TT (X). 
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As an' application of this result we prove a shape version of the 

Vietoris (-Smale) Theorem. S. Bogatyi and K. Kuperberg obtained such 

a result in the compact metric case. Our result overlaps with the 

recent work of J. Dydak [4]. 

Theorem 11. For metric spaces and a perfect map f: X -> Y such 

that f~ (y) is approximately k-connected, 0 < k < n, for all y 

in Y the induced homomorphism 

V ?n<X> * -n<Y> 

is an isomorphism. 
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