Josef Novák

Concerning the topological products of two Fréchet spaces

Persistent URL: http://dml.cz/dmlcz/700707

Terms of use:

© Society of Czechoslovak Mathematicians and Physicist, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
Let \((X, \mathcal{U})\) be a Hausdorff space. Denote \(u^*\) the following operator: \(x \in u^*A\) if there are points \(x_k \in A\) such that each neighborhood of \(x\) contains \(x_k\) for all but a finite number of \(k\), i.e.

if \(\lim \ x_k = x\). Let \(\{S_m\}\) be a twofold sequence, i.e. a sequence of sequences \(S_m\) of points of \(X\). If \(S'_m\) is a subsequence of \(S_m\), then we have twofold subsequence \(\{S'_m\}\) of \(\{S_m\}\). We define: \(\{S_m\}\) converges to \(x_o\) provided that \(x_o \in u^*S'_{m_i}\) for each subsequence \(\{S'_{m_i}\}\) of \(\{S_m\}\). Here \(S'_{m_i}\) denotes the set of all points of the sequence \(S_{m_i}\). A sequence \(\{x_k\}\) is a crosssequence in \(\{S_m\}\) provided that there is a subsequence \(\{m_k\}\) of \(\{m\}\) such that \(x_k \in S_{m_k}\).

Classify all points in a Hausdorff space into three (not necessarily disjoint) classes. We define the point \(x_o \in X\) to be a \(\mathcal{X}\) point provided that the following condition is fulfilled: if a twofold sequence \(\{P_m\}\) converges to \(x_o\), then there is a subsequence of \(\{P_m\}\) each crosssequence in which converges to \(x_o\). A point \(x_o\) is called a \(\mathcal{C}\) point if there is a twofold sequence \(\{R_m\}\) converging to \(x_o\) no crosssequence in which converges to \(x_o\). A point \(x_o\) is a \(\mathcal{G}\) point if there is a twofold sequence \(\{S_m\}\) converging to \(x_o\) in each subsequence of which there is a crosssequence converging to \(x_o\) and another one containing no subsequence converging to \(x_o\); moreover, if \(\lim S_m = x_o\) for each \(m\), then \(x_o\) is called a \(\mathcal{G}_1\) point and if \(\lim S_m = x_o\) and \(\lim x_m = x_o\) where \(x_m\) is one-to-one, then we have a \(\mathcal{G}_2\) point.

Let a twofold sequence \(\{S_m\}\) converge to \(x_o\) in \((X, \mathcal{U})\) and \(\{T_m\}\) converge to \(y_o\) in \((Y, \mathcal{V})\). The points \(x_o\) and \(y_o\) are said to be coupled if the following statement holds: If a crosssequence in \(\{S_m\}\)
converges to \(x_0 \), then the corresponding crosssequence in \(\{T_m\} \) does not converge to \(y_0 \) and vice versa: If a crosssequence in \(\{T_m\} \) converges to \(y_0 \), then the corresponding crosssequence in \(\{S_m\} \) does not converge to \(x_0 \).

Theorem. Let \((X,\mu)\) and \((Y,\nu)\) be Hausdorff Fréchet non isolated spaces and let \((X \times Y, w)\) be their topological product. Then \((X \times Y, w^*)\) is a Fréchet space iff there is no \(\rho \) point either in \(X \) or in \(Y \) and there are neither \(\sigma_1 \sigma_2 \) nor \(\sigma_2 \sigma_2 \) coupled points.

References

