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SUBBASE STRUCTURES IN NEARNESS SPACES 

E. WATTEL 

Amsterdam 

The aim of this note is to introduce the notion of a subbase for a 

Nearness space. 

NEARNESS SPACES were introduced by HERRLICH in [9,10] for the following 

reasons• 

a) Unification of the theories of proximity, uniformity, contiguity, 

merotopic spaces; cf. e.g. [4,7,8,11,12,14]. 

b) To give a richer structure than in topology in which uniform continuity, 

Cauchy filters, even covers etc. can be expressed without loosing essen­

tial parts of general topology. 

c) The category of Nearness spaces and N-morphisms is a little smoother 

than the category Top. Especially product constructions are nicer. 

For a more extended motivation and a bibliography we refer to [10]. 

SUBBASES are important in general topology, because several notions, 

characterizations and constructions are given in terms of subbases. We 

mention for instance: 

1) Construction of product spaces. (The collection of inverse images, with 

respect 'to projections, of open subsets in the coordinate spaces is a 

subbase for the product topology.) 

2) URYSOHN's metrization theorem [15]: A regular separable T. space is 

metrizable iff it has a countable (sub)base. 

3) . A space is generalized orderable iff it t\as a T. subbase consisting of 

two nests [3]. 

4) Alexander's theorem. A space is compact iff it is compact relative to 

its subbases [1]. 

5) The DE GR00T theory on superextensions and supercompactness and the 

DE GROOT & AARTS compactification method by means of linked systems 

chosen from (weakly) normal subbases [5,6,16]. 
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With the definition of an N-subbase which is exposed here we will 

adapt those subjects for N-spaces. 

DEFINITION OF THE NEARNESS SPACE (X,u). [HERRLICH] [10]. Let X be set 

and let u c P(P(X)), then u is a collection of uniform covers in an N-space 

iff u satisfies the axioms: 

(i) If A is refined by some B e u then A e u-

(ii) Members of u are covers of X. 

(iii) {X} e u. 

(iv) A, B e u then A A B - {AnB|AeA; B e B} e p. 

(v) A e u then {Int(A)|AeA} e u 

in which Int(A) - {x|{A,X\{x}} e p}. 

The interior operator claimed in (v) defines a topology on the set X, 

compatible with the nearness structure u. This topology satisfies the 

following axiom: 

(RQ) Vx,y e X: x e Clx(y) «-> y e Clx(x) . 

An N-space is topological iff all open covers of this topology are in u. 

An N-space is oontiaual iff every cover in u has a finite refinement which 

is in u. 

An N-space is compact iff it is topological and contiqual. 

An N-space is uniform iff every cover in u has a star refinement in u. 

An N-morphism between (X,uY) and (Y,uv) is a set function f: X -*• Y such that: 
X x 

VA e uy: {f*"[A] | A e A} e v r 

N-spaces are completely determined by the set of all open covers in u, 

and for the sequel we restrict ourselves to open covers of X. 

DEFINITION OF AN N-SUBBASE. An N-subbase o for a nearness structure on 

X is a collection of covers of X which satisfies: 



5 0 2 

V x e S e S e o : 

a S j , S 2 , . . . , S n in o such that {X\{x},S} i s 

ref ined by S. A S 0 A . . . A S . 
1 2 n 

The underlying topological Space is constructed by taking 

S - {S I S € S e a} o ' 

as an open subbase. 

We obtain the N-space defined by the N-subbase by taking all covers of X 

which are refined by finite A-intersections of covers in a. 

Every collection of covers y of X can be extended to an N-subbase o. 

We put: 

o -- Y u {{X\{x}, C} | X € C € C € Y>. 

A cluster in an N-subbase or in an N-space is a maximal collection of 

open sets which does not contain an admissible cover. Extensions of N-

spaces are constructed on the collection of all clusters. 

If U is an open set in X then U is the collection of all clusters 

which do not contain U. We obtain a new N-space by taking extensions of 

admissible covers: 

a+ -- {S+|Sca} 

in which 

S+ - {U+|U€S}. 

For instance, in contigual spaces there are sufficiently many clusters 

to obtain well defined extensions. 
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APPLICATIONS 

1) We obtain a subbase for the product N-structure of a collection of N-

spaces if we take all inverse images under projections of the open covers 

in the coordinate N-spaces. ^ 

2) An N-space is metrizable iff it is uniform and it has a countable N-

subbase. (ALEXANDROFF-URYSOHN [2] adapted in [10]). 

3) An N-space is generalized orderable iff it has an N-subbase o separating 

points, such that every cover in o consists of two elements and S 

consists of two nests. ([3], adapted). 

Moreover, the cluster-extension of such an N-space is compact and 

ordered, and all the order-preserving compactifications of the under­

lying topological space can be obtained in this way. 

4) An N-space is contigual iff it has an N-subbase consisting of finite 

covers. (ALEXANDER [1] adapted). 

5) An N-space is supercontigual iff it has an N-subbase consisting of two-

element covers. N-spaces which are both topological and supercontigual 

are supercompact. The cluster extension of a supercontigual N-space is 

supercompact. The closure of the underlying space in the extension is a 

compactification. If the underlying N-subbase separates points and sub-

base emembers and satisfies some condition of weak normality (in [7] 

screening) then this compactification is a Hausdorff compactification. 

This is an adapation of the DE GR00T theory on superextensions [5,6,16]. 

HAMBURGER [7] showed that all T^-compactifications can be obtained by 

means of strong preproximities. There is a canonical way to define an N-

subbase for a supercontigual space from a preproximity. A pair {A,B} is in 

o iff {X\A,X\B} is not "near" in the preproximity. Following this modifi­

cation HAMBURGER'S paper shows that all T2-compactifications can be derived 

from cluster extensions. 

However, the question whether all T^-compactifications can be derived 

directly by DE GROOT's method is still open. 

Recent results of VAN MILL suggest a positive answer [13]. 
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