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NORMAL AND CATEGORY MEASURES 
ON TOPOLOGICAL SPACES 

J. FLACHSMEYER 

Greifswald 

The general theory of topological spaces can be built without using real numbers. 
But many parts of the advanced topology have a substantial relation to real numbers. 
One of these relations turns up in the investigation of measures on topological 
spaces. Here we are interested in the case when topologically thin sets are thin in 
a measure theoretic sense too. Several authors have considered such questions with 
more or less restrictive assumptions on the underlying space. It is not immediately 
evident how significant these assumptions are. The purpose of this paper is to make 
some steps in an interesting program to clarify the relevance of a special topological 
structure for topological measures. 

1. The space of regular Borel measures 

Let X be an arbitrary topological space. A bounded Borel measure \i on X is 
a positive countably additive function on the Borel field of X (the least a-field con
taining the open sets) with fi(X) < +00. By regularity of a Borel measure \i we mean 
that for every Borel set B in X: 

li(B) = inf {/x(U) I U open in X and U 3 J5} . 

A bounded signed Borel measure n is called regular if its positive and negative 
parts /i+ and [T are regular Borel measures. 

The system Jf(X) of all bounded regular signed Borel measures with pointwise 
addition and scalar multiplication and pointwise ordering is a vector lattice. By 
definition 

\\4:=\4X) = ^(X) + I*-(X). 

\x —> |ju| is a norm for Jf(X) and makes it a Banach lattice. 
Now a Banach lattice Lis called a Kakutani-L-space if the norm has the additivity 

property for positive elements: 

xžO, yžO, ||* + Jt| = fl*fl + 1MI 
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Every Kakutani-L-space is an order complete vector lattice (cf. Day [2]). 
From the results mentioned in Dunford-Schwartz [4], Chap. Ill § 7, it can be seen 
that: 

The system Jt(X) of all bounded signed regular Borel measures on an arbitrary 
topological space forms in a natural way a Kakutani-L-space. 

2. The space of normal measures 

The notion of a normal Borel measures is due to J. Dixmier [3] for the special 
case of extremally disconnected compact Hausdorff spaces. Some writers gave an 
extension of this notion to more general spaces (cf. Heider [8] for Boolean spaces, 
Knowles [11] for completely regular spaces, Hebert and Lacey [7] for compact 
Hausdorff spaces). 

Definition. Let X be an arbitrary topological space. A bounded regular Borel 
measure JU e J£+(X) (the set of positive measures) is called a normal Borel measure 
if every nowhere dense Borel set has measure zero. Roughly speaking, a normal 
positive Borel measure is a measure for which topological null-sets are measure 
null-sets. 

A signed normal Borel measure is a measure \ie ~$(X) such that fi+, ii~ are 
normal Borel measures. 

Theorem 1. (The structure of the system of all normal Borel measures?) 
Suppose X is an arbitrary topological space. Then the system ^(X) of all 

bounded signed normal Borel measures on X with respect to pointwise addition 
and scalar multiplication, and pointwise ordering is a vector lattice. 

For the positive part fi+ and the negative part \i~ offie ^V(X) it holds 

fi+(B) = sup {n(A) | A Borel set with A c B} 

/i"(B) = -inf {n(A) | A Borel set with A a B} . 

By the total variation ||JU|| := |ju|(X) (|^| = n+ + /i") of the measure /J e ^(X) 
the vector lattice ̂ V(X) becomes a Banach lattice, this means complete with respect 
to the norm ||. || and the order and the norm structures are related through 

M ̂  H - IHI ^ H • 
Moreover, the norm has the additivity property on ^(X)\ 

H^O, v £ 0 , \\n + v| = l/if + ||v|| . 

Summarizing all these properties: 
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The space ^V(X) of all signed normal Borel measures on the topological space X 
is a Kakutani-L-space. *W(X) is a convex lattice-subspace of Jf(X). 

Remark. For the case of Boolean spaces X and normal Baire measures this 
theorem is stated in Heider [8], for the case of compact Hausdorff spaces and normal 
Borel measures it is remarked in Hebert-Lacey [7], p. 116. 

Proof. The difference of two positive normal Borel measures /ilf [i2 must be 
normal, since 1a = /i1-/i2 = ^+~"M~ implies /ii ^ ju+

 = 0, /*2 .= /*" = () and therefore 
fi+ and \T are normal. Thus we have Jf(X) as a subspace of Jf(X). This subspace 
is a /-convex (a solid) subspace, namely for fieJr(X) and veJf(X) |v| ^ \fi\ implies 
v e ^(X). To prove the norm completeness of the normal vector lattice ^(X) we 
have only to follow the reasoning by which the norm completeness of J((X) is proved 
in Dunford-Schwartz [4], Chap. Ill § 7. There the equivalence of the total variation 
norm | . || in M{X) and the supremum norm \\i\ := sup {|/J(-B)| | B Borel set in X) 
is shown. But for the norm || ||\ Jr(X) is a closed subspace of Jt(X). 

Examples. 1. For every separable metrizable space X without isolated points 
there exists only the trivial normal Borel measure /i =. 0. Thus Jr(X) is here the 
null space. 

Particularly, this can be established for a regular Borel measure fi(X) > 0 with 
/j({x}) = 0 for each xeXby finding a dense open subset of arbitrary small measure 
using a cover of a countable dense subset (see for this question also Marczewski 
and Sikorski [12]). 

2. Let X be a T^-space. Every bounded signed regular Borel measure on X 
is a normal Borel measure iff X is discrete. (J((X) = Jf(X).) 

For this it is only needed to consider the point-measures (Dirac measures) dx, 
xeX. 

Recall that a Freudenthal-unit in a vector lattice is a positive element v > 0 
such that inf (|x|, v) = 0 implies x = 0. 

The L-space ^V(X)for a discrete space X has a Freudenthal-unit iff card X = 
= X0. A positive measure on X is a Freudenthal-unit iff each point has strict 
positive measure. Of course rf(X) ( = JK(X)) is order isomorphic and isometric 
to the space li(X) of absolute summable real "sequences" on X. 

3. Apart from its intrinsic interest, the relevance of normal Borel measures 
arises from the well known situation of representation of every Kakutani-L-space 
by a space of all normal measures on a suitable compact extremally disconnected 
Hausdorff space X (cf. Kelley and Namioka [15]). There the space X can be con
structed as the structure space of the dual space L* which is isometrically isomorphic 
to the space of all continuous real valued functions ^(X) on a topologically uniquely 
determined compact Hausdorff space X. The canonical embedding of L in its second 
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dual L** gives L, after identifying L** with the space JK(X) of all regular Borel 
measures on X9 as the closed linear subspace ^(X) of Jl(X). 

According to this representation theorem every L-space JK(X) of all bounded 
signed regular Borel measures on a topological space X is isometric isomorphic 
to the space Jf{Y) of all normal Borel measures on a space Y. 

The space J(aN) of all bounded signed regular Borel measures on the one-point 
compactification of the space N of natural numbers is isometric isomorphic to the 
space c/f(N) of all normal measures on N resp. isometric isomorphic to the space 
Jf(ptf) of all normal Borel measures on the Stone-Cech compactification of the 
natural numbers. 

By the way we can ask for which spaces X there is a "nice" correspondence 
to spaces Y such that Jt(X) is isometric isomorphic to ^(Y). 

3. Supports of normal measures 

The support for \i e Jl+(X) is defined as the following 

supp p.: = X \ \JU | (17 open in X with fi(U) = 0) . 

For arbitrary elements fi e M{X)9 the support is understood to be the union 
of the supports of the positive part /i+ and the negative part \i~'. 

Definition. An arbitrary topological space X is said to have a rich system 
of normal Borel measures iff every nonvoid open subset contains the support of 
a non trivial normal Borel measure on X. 

Remark. This concept applied to extremally disconnected Hausdorff spaces 
(sometimes called Stonian spaces) is equivalent to Dixmier's notion of hyperstonian 
spaces. According to Dixmier, in a hyperstonian space the union of supports of 
normal measures is dense in the space. 

Theorem 2. Suppose X is an arbitrary topological space. The support of 
a normal Borel measure on X is a regular-closed subset of X9 which is a Baire 
space: If HGJV(X) then for F := supp#, F = IntF, and every relatively open 
subset of F is not meager. Let X be a space with a rich system of normal Borel 
measures. Then every meager set is nowhere dense and X must be a Baire space 
in which every non empty open set contains a non empty regular closed set. 

Remark. For compact Hausdorff spaces X which are extremally disconnected 
(sometimes called Stonian spaces) this is the contents of two propositions by Dixmier 
[3]. The last part is a generalization of Theorem 3 in Oxtoby's paper [14]. Measures 
with the whole space as the support are considered there. Spaces that contain in every 
non empty open set a regular closed set are called quasi-regular by Oxtoby. 
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Proof. We can consider positive measures because the union of two regular 
closed sets is regular closed again. Let fiE^V*(X), F := supp/*. For the regular-
closed kernel P : = Int F of F9 F \ P is a nowhere dense Borel set. Therefore 
pi(F \ P) = 0. Then P must be the support of \i, i.e. F = P. \i restricted to its support 
is a normal Borel measure on its support. Then every nonvoid open subset of supp fi 
has strictly positive measure but meager open sets are null-sets with respect to normal 
measures. To prove the second part it is sufficient to consider Borel sets and show 
for meager Borel sets B, Int B = 0. Each meager Borel set is for every normal measure 
a null set. Then Int B = 0, since for Int B =# 0 there exists a positive Borel measure 
with fi(B) ^ pi (Int B) > 0. From B = (B \ Int B) u Int B it follows ju(JB) = 0 for 
each normal Borel measure. Thus we have 

Int B = 0 . 

Corollary. Let X be a Tx-space separable in the sense of Frechet (that means X 
has a countable dense subset) without isolated points. Then there is no nontrivial 
normal Borel measure on X. 

Proof. Let / / b e a nontrivial normal Borel measure on X. Supp n is regular 
closed in X. Then supp /x is a Ti-space separable in the sense of Fr6chet without 
isolated points. Thus we may assume supp /J, = X. Then X is a space with a rich 
system of normal Borel measures. The countable dense set is meager but not nowhere 
dense. It follows \i = 0. 

Remark. Dixmier [3] constructs an extremally disconnected compact HausdorfF 
space which is not hyperstonian in the sense of Dixmier but for which every meager 
set is nowhere dense. 

Definition. Let X be an arbitrary topological space. A positive normal measure 
fi e Ar+(X) is said to be a category Borel measure iff its support is the whole space X. 

Remark. Oxtoby [14] called a positive bounded measure \i on the class of sets 
having the property of Baire (the a-field generated by the open sets and the meager 
sets) a category measure for the topological space X if n(A) = 0 means A is meager. 
Every category measure is the completion of a Borel measure. It is easy to see that 
a category Borel measure in our sense gives a regular category measure of Oxtoby 
by completion and conversely a category measure of Oxtoby restricted to the class 
of Borel sets is a Borel category measure. In other words, a category Borel measure 
means a regular Borel measure such that the Borel null-sets are identical with the 
Borel meager sets (Borel sets of the first category). 

Theorem 3. Let X be a topological space with a rich system of normal Borel 
measures. Then the Kakutani-L-space ^(X) of all normal Borel measures has 
the following properties: 
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1. The Freudenthal-units coincide with the Borel category measures on X. 
2. There exist Freudenthal-units in Jf(X) iff the space X has the Souslin-

property that every open disjoint family is countable. 

Remark. Without any assumption on the space X each Borel category measure 
in rf(X) is a Freudenthal-unit in ^V(X)9 and the converse does not hold. 

Proof. Let v e ^ + ( X ) . If supp v 4= X then X \ supp v contains a support 
of a nontrivial normal Borel measure \k. Then inf (v, |/J|) = 0. Therefore Freudenthal-
units must have X for its support. Conversely, for a category measure v let inf (v, |/J|) = 
=- 0 with \i e $T(X). If U =J= 0 is open, .then v(U) > 0. Therefore \/x\(U) = 0 and 
supp \i — 0. For a positive normal Borel measure \i with support X every disjoint 
open family must be countable. 

Now let X be a space with a rich system of normal Borel measures and such 
that it has the Souslin-property. We consider a disjoint family in the vector lattice 
JT(X). This means (ii)ieI, 0 4= /^ e ^ (X) , with inf(|/i,|, \pj\) = 0 for i 4= j . Then 
since Int (supp /*,) is a disjoint family of open sets, it must be a countable family, 
i.e. card J rg K0. With the help of Zorn's Lemma we can find a maximal disjoint 
family of positive normal measures. This family is countable: pl9 [i2,..., \in9 .... 
Hence 

is a normal measure. We have supp \i = X, since in the other case we find a positive 
normal measure v with supp v cr X \ supp ju, which contradicts the maximality 
of the family pt9 \i29.... 

4. Normal measures and their induced measures on the Boolean algebra of regular 
open sets 

The regular open sets of a topological space X form (with respect to the inclusion 
as an ordering) a complete Boolean algebra. This Boolean algebra is isomorphic 
to the Boolean algebra of regular closed sets. 

Definition. Let B be a complete Boolean algebra. A positive additive function 
li: B -» R is said to be a-additive if for every countable disjoint family (o„)„eH °^ * 

00 

/x(sup an) = ^ fi(an), 

completely additive if for every arbitrary disjoint family (a^)ieI 

ju(sup A|) = XXflj) = sup { £ fi(a), E finite subset of/} . 
ieE 
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Of course the first and the second condition are equivalent respectively to the 
conditions 

KSUP an) = sup »(an) by an S a 
and 

j/(sup a|) = sup fi(at) by a% ? a . 

These things are well known. 

Example 4. Let X = [0, Q] be the space of ordinals less than or equal to the 
first uncountable ordinal Q. The point measure 5n is a regular Borel measure on X. 
We see that this measure induces on the Boolean algebra M0(X) of all regular open 
sets a ex-additive measure, because every countable family of regular open neighbor
hoods of the limit point Q has a non empty regular open infimum. But this measure 
on W0(X) -s n o t completely additive, since the infimum of all regular open neigh
borhoods of Q is zero in 9l0(X) and the measure of all these neighborhoods is identic
ally 1. 

Theorem 4. Let fi be a positive normal Borel measure on an arbitrary topolo
gical space X. Then the function induced by \i on the Boolean algebra of regular 
open sets is a completely additive measure. Two distinct normal Borel measures 
have distinct completely additive traces on the Boolean algebra of regular open sets. 
Every complete additive measure on the Boolean algebra of regular open sets is the 
trace of a normal Borel measure on X if the space X is a quasi-regular Baire space. 

Remark. This statement extends a theorem of Oxtoby [14] (cf. also Mibu [13]) 
to the case of normal measures while Oxtoby considers category measures. That 
every normal measure induces a (T-additive measure on 9l0(X) is also remarked 
in Hebert-Lacey [7]. 

Proof. Let fie^V+(X); we restrict \i to its regular closed support. Then the 
trace of \i on 9l0(supp \i) is a or-additive strictly positive measure. Therefore it is 
completely additive on 9?0(supp \x). But then the extension to *&0{X) remains com
pletely additive. For normal measures \i e rf+(X) we have fi(U) = fi(Int U), U open 
in X. By regularity of fi for a Borel set B: 

fi(B) = inf {fi(H) \H Z> B,H regular open} . 

Thus a normal measure is uniquely determined by its trace on 9?0(AT). 

The last part is a consequence of Theorem 2 in Oxtoby [14], 

Theorem 5. LetX, Ybe regular Baire spaces andf :X -*Ya proper irreducible 
map from X onto Y (this means that f is continuous, closed with compact fibres, 
and no closed subset F 4= X is mapped onto Y). Then f gives in a natural way an 
isometric isomorphism from the space of normal measures on X onto the space 
of normal measures on Y. 
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Remark. This statement generalizes the investigation of Hebert-Lacey on 
normal measures and the projective resolution. 

Proof. It follows from Theorem 4 and our investigation about the behavior 
of regular open (closed) sets under proper irreducible maps [5], [6]. 

References 

[1] G. Birkhoff: Lattice theory. 2nd ed., New York, 1948. 
[2] M. M. Day: Normed linear spaces. Springer Verlag, 1958. 
[3] / . Dixmier: Sur certains espaces considered par M. H. Stone. Summa Brasil. Math. 2 (1951), 

151-181. 
[4] N. Dunford and / . T. Schwartz: Linear operators. Part I, General theory. Interscience 

Publishers, 1958. 
[5] / . Flachsmeyer: Topologische Projektivraume. Math. Nachr. 26 (1963), 57—66. 
[6] / . Flachsmeyer: On the system of regular open (closed) sets. (Russian.) Dokl. Akad. Nauk 

SSSR 156 (1964), 32-34 . 
[7] D. J. Hebert and H. E. Lacey: On supports of regular Borel measures. Pacific J. Math. 27 

(1968), 101-118. 
[8] L. J. Heider: A representation theory for measures on Boolean algebras. Michigan Math. J. 5 

(1958), 213-221. 
[9] S. Kakutani: Concrete representation of abstract (L)-spaces and the mean ergodic theorem. 

Ann. of Math. 42 (1941), 523-537. 
[10] S. Kakutani: Concrete representation of abstract (M)-spaces. Ann. of Math. 42 (1941), 

994-1024. 
[11] / . D. Knowles: Measures on topological spaces. Proc. London Math. Soc. 17 (1967), 139— 

156. 
[12] E. Marczewski and R. Sikorski: Remarks on measure and category. Colloq. Math. 2 (1951), 

13-19. 
[13] Y. Mibu: Relations between measure and topology in some Boolean space. Proc. Japan Acad. 

20 (1944), 454-458. 
[14] / . C. Oxtoby: Spaces that admit a category measure. J. Reine Angew. Math. 205 (1960/61), 

156-170. 
[15] / . L. Kelley and I. Namioka: Linear topological spaces. Van Nostrand, 1963. 

ERNST - MORITZ - ARNDT - UNIVERSITAT, GREIFSWALD 


		webmaster@dml.cz
	2012-09-21T02:43:40+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




