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THE UTILITY OF EMPTY INVERSE LIMITS 

F. B. JONES 

Riverside 

By an inverse system we shall mean a collection of pairs {Xa, fafi} where a, /J, 
and y belong to a directed index set A, Xa is a nonempty set and faP is a mapping 
from Xa to Xp such that fpy[faJ = fay for y < /? < a. In fact, we shall consider 
only the special case where A is the set of all ordinals less than a given limit ordinal 
and the maps faP are "onto". The inverse limit of such a system is the subset {xa} 
of the cartesian product XXa (a G A) s u c h that xfi = fap(xa) for /? < a. Usually one 
is interested in an inverse system because the inverse limit is nonempty. However, 
there are situations when the fact that the inverse limit is empty or trivial is of interest. 

In studying Souslin spaces an inverse system whose inverse limit is empty arises 
naturally. In 1935 G. Kurepa called such systems ramifications and studied them 
at some length in [8] and [9]. In addition to many positive results (about linearly 
ordered spaces in particular) he posed some beautiful problems, some of which have 
apparently turned out to be unsolvable. At about the same time, in connection with 
the normal Moore space metrization problem [4] (and certain other problems [5]), 
I also constructed inverse systems of this sort (with Xa countable for each a < <ox) 
whose inverse limits were empty. What seemed at that time a promising method 
of constructing a non-metric normal Moore space has also wound up among the 
logician's models [11]. 

About 1950 Tukey raised with Henkin the question as to the existence of an 
inverse system (with onto bonding maps) whose inverse limit was empty. To under­
stand Henkin's construction [2] it will help to see how a very simple construction 
would yield such a system if we did not require the bonding maps to be onto. 

For each positive integer i let Ht be the set of positive integers greater than i — 1. 
Define f2x(n) to be n (in Hx) if n > 1. And in general, fafi(n) = n (in Hp) for n _ a. 
This defines an inverse system {Ha,fafi} for /? < a < co0 whose inverse limit space 
is empty. The easiest way to picture this system as a tree is in the first quadrant 
of the xy-plane with Ht being the (positive) integral points of x-axis; H2, those on the 
line y = 1, etc., with the branches of the tree being arcs running straight up from Ht 

to the highest integral point below the main diagonal (the line y = x). Clearly the 
inverse limit space is empty because no arc (or ray) in the union runs all the way 
to the top of the plane. So when the tree is X0 wide (JJF̂ ĵ = K0) and X0 tall, no 
branch need run all the way to the top of the tree. (Actually to complete the tree 
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one must run the branches from Ht down to a common trunk but this just amounts 
to adding H0 to the system with H0 degenerate, say H0 = {0} and fa0(n) = 0 for 
all n ^ a and 0 < a < co0.) Obviously the maps are not onto. But a similar thing 
can be done to define a system {Xa,fafi} for /? < a < cox where the bonding maps 
are all "onto". 

Begin by letting Xt be the ordinal points in y = 1 of X x Y where both X and Y 
are "long rays" (from 1 to co^ including 1 but not cox). For each element x in Xx 

and countable limit ordinal a, run a ray La(x) straight up from x which intersects 
every horizontal ray y = ft (where P is an ordinal less than a) but not intersecting 
y = a. Consider all of these rays to be disjoint except that for a and ft different 
countable limit ordinals La(x) n Lfi(x) = x, i.e., no two of the rays emanating from 
points of Xt intersect except when they emanate from the same point and when they 
do emanate from the same point, they have that point and no other in common. 

Now let X2 be the set of all points of y = 2 belonging to rays La(x) for x in Xx. 
So for each x in Xt and each countable limit ordinal a there is a unique point of 
La(x) in X2 and/21 maps this point to x. Again for x in X2 and limit ordinal a < cot 

run a ray straight up from x up to but not intersecting the horizontal line y = a 
and consider all of these disjoint except their common emanation point in case they 
emanate from the same point. The set X3 is the set of all points at the y = 3 level 
which belong to vertical rays thus defined emanating from points of Xx uX2-
The definition of the bonding maps is obvious. And in fact, the entire construction 
is now obvious, Zroo (for example) being those points of y = co0 belonging to those 
rays running straight up from points of Xfi for /? < co0 as already defined. Hence 
if the inverse limit of the system were non-empty some branch would have to run 
straight up from some line y = a (a < co{) to (but not intersecting) the line y = col9 

for if a path changed branches infinitely many times, say at at < a2 < a3 < ... 
then such a path would not reach y = lim <xt. But no branch runs straight up to 
y = cov So the inverse limit is empty. 

At this point one can see that even when the bonding maps are "onto" it is not 
surprising for the inverse limit to be empty when |Za| ^ N (ae^) and |i4| ^ K 
unless some countable subset of A is cofinal w;th A. On the other hand, if A is a limit 
ordinal (i.e., the set of all ordinals less than A) and K is a cardinal such that \Xa\ < 
< K < \A\ for a < A, the inverse limit is non-empty. The spirit of this condition 
would be violated if some subsequence of A cofinal with A had cardinality less than 
|^|. Roughly speaking, if the tree is substantially taller than it is wide, then from 
some level on, the branches run straight on up to the top. See [5] for a more accurate 
statement of this rather simple fact. So the more interesting cases occur when the 
height is larger than the width but just barely so. This is the case in an example 
due to Higman and Stone, which I shall describe next. 

If the spaces in the inverse system {Xa9fafi} are groups or rings, etc., and the 
mappings are "onto" homomorphisms, the inverse limit is a group or ring, etc., 
in such a natural way that its natural projection onto Xa will bd an "onto" homo-
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morphism. Zelinsky raised the question as to the necessity of the projection being 
"onto" and Higman and Stone constructed an example where the cardinality of the 
inverse limit is too small for the projection be "onto" (in fact, contained only 
one element). Basic to their construction (for the case of groups, etc.) is the following 
inverse system whose inverse limit is empty [3]. 

For each initial closed interval [1, a] of the countable ordinals (a < cox) let Ga 

denote the collection of all increasing bounded functions from [1, a] to the real 
numbers. Now for each a < cou Xa is defined by induction to be a countable subset 
of Ga subject to the following conditions: 

(1) if P < a < cOi and xa belongs to Xa9 there is one and only one element xfi 

of Xp such that Xp cz xa9 and 
(2) if P < a < cou n is a natural number, and xfi belongs to Xp9 then there is an 

element xa of Xa such that xp c xa and xp(P) — xa(<x) < 1/2". 
Choosing Xx to be some arbitrary countably infinite subset of Gt there would 

be no difficulty in constructing the system if one realizes that for each n and each 
a < col there is an increasing function from [1, a] of the ordinals into [0, 1/2"] 
of the real numbers. Furthermore, the bonding maps fafi are defined so that for xa 

in Xa9 faP(xa) = xfi in Xp if and only if xp c xa. From this property it follows immedi­
ately that the inverse limit is empty because there exists no increasing function from 
[1, cot) to the real numbers (uncountable subsets of the real numbers contain points 
which are condensation points from both sides). 

This construction is quite like an old one of mine (about 1946) in which the 
branches of the tree were arcs whose lengths were diadic rational numbers. The 
functions xa above for [0 < /? ^ a] could be chosen so that the arc length from H0 

to its end point in Hfi is xa(P) [6]. 
The use of inverse systems with empty inverse limits in examples is perhaps to be 

expected. But such systems are quite useful in the proof of certain kinds of theorems. 
For instance, Roy in proving Arhangelskii's theorem on the cardinality of first 
countable, Lindelof spaces S uses an inverse system {Xa9faP} where for each a < cou 

Xa is a closed covering of S with \Xa\ £ c. While the bonding maps preserve inclusion 
(i.e.9f~p1(xi) is a decomposition of xp for a = /? + 1 when /^ 1 ^ ) is nondegenerate) 
and the maps are onto, the tree does not branch at xfi e Xp if \x0\ ^ c, i.e., if fafi(xa) = 
= Xp and \xp\ ̂  c then xa = xfi. So the inverse system itself does not have an empty 
inverse limit. However the subsystem of those sets xa such that |xa| > c does have 
an empty inverse limit and it is this fact that is central in the proof. 

Perhaps it may be instructive to outline Roy's proof [10], leaving unproved 
certain set theoretic lemmas which are either known or in any case easy to establish. 

.Arhangelskii's Theorem [1]. Let S denote a Hausdorjf space in which the First 
Countability Axiom holds true (x(S) = X0). Then if S is Lindelof \s\ ^ c. 

Let X0 = {S}. Let Xt denote a collection of closed subsets of S covering S 
such that \XA ^ c. Define f10 from Xt onto X0 in the obvious way: /io(*i) = s 
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for all xt in Xx. Construct Xt so that one of its elements x\ has the following three 
properties: 

(i) |*s| * c 
(2) if xt eXt — {x\} then xt n xc

x = 0 (if \xc
x\ ^ c, then x\ is the intersection 

of at most c open subsets of S), and 
(3) if \S\ Sc9Xt- {xc

±} = 0. 

In general, given Xfi9 Xa is defined from Xfi in exactly the same way when a = /? + 1 
so that: 

If x^ e Xfi9fap
X(x^) is a collection of no more than c closed subsets of xfi covering 

xfi which contains an element xc
a such that 

(1) \<\ = *, 
(2) if xa eftffap) - {xc

a} then xa n x£ = 0, and 
(3) if \xfi\ = c then^x' = xfi and /"/(x,) - {xa} = 0. 

More specifically, this is how Xa is constructed if /? is not a limit ordinal. 

When P is a limit ordinal define ^ as follows: If {xy} (y < /}) is an element 
of the inverse limit of {Xy9fyd} then f)xy (y < /?) is an element of X0 and conversely. 
Obviously Xfi is a closed cover of S and the definition of ffiy for y < /? is the natural 
one. Furthermore, if /? < col5 JĴ Ĵ ^ c. 

Returning to the definition of \Xa\ when a = /? + 1 and /? is a limit ordinal 
with Xfi = fafi(x

c
a) and x^ = f)xy as above, we require that xa u {x£ |/y(7-i)(^y) = 

== /y(y-i)(xy)}* (f°r a ^ 7 < P) be closed. (* means union.) 
Now suppose that the subsystem of all those elements of Xa for all a < cot 

whose cardinality exceeds c has a non-empty inverse limit. Let {xa} be an element 
of this limit. Then |xa| > c for each a < wx and {xa}* for which fa{a^X)(x

c
a) = 

= /«(«- i)(xa) is closed. But {xa}* is covered by {S — xa} (a < cot) but by no countable 
subcollection. Since S is Lindelof this is a contradiction. Hence the subsystem has 
an empty inverse limit. It follows that the collection of all elements of \JX( of cardin­
ality c or less covers S. But |U^/| .= c5 s o \s\ ^ c-

When one grasps the salient points of this construction, one sees that it generalizes 
to cardinals larger than K0. (Juhasz [7] has done this for Arhangelskii's argument.) 

Theorem (Juhasz). Suppose that S is a Hausdorff space and X is a transfinite 
cardinal such that x(p) S K for each p in S. Then if each open cover of S contains 
an open subcover of cardinality X or less, \s\ ^ exp X. 

First let us check some elementary lemmas. 

Lemma 1. If p is a limit point of a point set M then p is the limit of a net T 
of distinct points of M such that \T\ ^ X. 
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Lemma 2. If M is a closed subset of S, such that \M\ ^ exp X, then M is the 
intersection of no more than exp X open sets. 

Proof. For each point p of M let <%(p) denote a topological basis at p such that 

g K. If U is any open set containing M some subcollection f of U <%(p) 
peM 

covers M such that U 3 f *. Without loss of generality we may assume that \t^\ <£ K. 
Hence the total number of such collections if required so that we have at least one 
for each U .3 M is (exp K)** and (exp X)* = exp K. 

Lemma 3. J/ Jl is a collection of disjoint closed point sets M such that \Jl\ ^ K 
and \M\ ^ exp K, then |C1 Jl* - Jl*\ ^ exp K. 

I n d i c a t i o n of proof. If p e CI Jl* — M*, then p is the limit of a net T 
obtained by selecting no more than one point from each element of Jl. The total 
number of such nets Tis at most (exp K)K -= exp X. 

Now for the space in the theorem we construct our inverse system {Xa,faP} 
for all a, f} < co+ where co+ is the smallest ordinal such that |co+| = K+ (the smallest 
cardinal greater than X). Suppose that a = p + 1 and xfi is an element of X0. Then 
if |x^| <i exp tt, f^fap) contains just one element xa of Xa; otherwise, fafi%(xfi) *s 

a collection of closed subsets of xfi covering xp one of whose elements xc
a is of cardin­

ality no more than exp K and is disjoint from all the others. If /? is a limit ordinal, 
xp = Ofpy(

xfi) f ° r all y < j8 and xc
a contains all of the limit points of {xc \ /a (y_ i)(x£) = 

~ fpiv-t)(xp)}* which belong to xfi. 

Again, as in Roy's proof of Arhangelskii's theorem, the subsystem composed 
of those elements of \JXa (a < co+) whose cardinality exceed exp X has an empty 
inverse limit. Consequently the subcollection of \JXa of those of cardinality exp K 
or less covers S. Since the cardinality of this collections is exp X or less, the cardinality 
of its union and hence of S is also exp X or less. 
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