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A CATEGORICAL GENERALIZATION 
OF COMPLETELY HAUSDORFF SPACES 

G. PREUSS 

Berlin 

A topological space X is well known to be called a completely Hausdorff space 
if and only if for any two distinct points x, y eX there exists a continuous function / 
from X to the space R of real numbers with/(x) =i= f(y). If we substitute the space R 
of real numbers in the definition of a completely Hausdorff space by the discrete 
space D2 consisting of exactly two points we obtain the class of all spaces whose 
quasi-components consist only of a single point. Taking the Sierpinski space S (that 
means the topological space consisting of exactly two points and three open sets) 
instead of R we obtain the class of all T0-spaces. Now let us consider a whole class S 
of (non-void) topological spaces and let us define a class QS of topological spaces 
in the following way: 

Xe QS oFor any two distinct points x, y eX there exists a space EeSand 
a continuous m a p / : X -> E with/(x) #= f(y). 

Let us choose for S the class of all spaces with the topology of finite complements. 
Then QS consists of exactly all 7\-spaces. It is impossible to find a space E such that 
Q{E} = {Tj-spaces}. This is an immediate consequence of a result of Herrlich that 
for each 7\-space X there is a regular 7^-space Y consisting of at least two points 
such that each continuous function / from 7 into X is constant. 

Now let ^ be a category and si a (full) subcategory. Then we define a full 
subcategory Q^si of # by defining the object class \Q<$si\ of Q<$si by 

| Q<gst\ = {X | For any two distinct morphisms a, /?: Z -> X there exists an 
object A e \si\ and a morphism / :X -> A with / o a 4= /<> /?}. 

(If we take for # the category of topological spaces (and continuous maps) 
and define si by \si\ = S, then we obtain 

\Q*si\ = QS 

in the sense defined above.) 
It turns out that Q^si is isomorphically closed as well as closed under formation 

of products (in the categorical sense) and extremal subobjects (that means subspaces 
in the topological case). If <€ is a "nice" category we may conclude that Q^si is an 
epkeflective subcategory of #, but it does not generally coincide with the epireflective 



362 G. PREUSS 

hull Rfgst of st in # (i.e., the smallest epireflective [full and isomorphically closed] 
subcategory of # containing st). But if in addition <g is balanced (that means every 
^-bimorphism is a ^-isomorphism), we get the result 

(*) Q«st = R<«st. 

Take for # the category of compact r2-spaces (and continuous maps) and define st 
by \st\ = {D2}; then we obtain from (*) the well known fact that a compact T2- space 
is zero-dimensional if and only if each of its quasi-components consists of a single 
point. 

For a "nice" category (that means cortiplete, locally and colocally small) the 
following theorem is valid: 

Theorem. The following statements are equivalent: \ 

(\)Xe\Q^\. 

(2) The reflection map rx : X -> XR^ is a monomorphism. 

(3) X is subobject of a product of st-objects (in <%). 

Corollary. Q^st is the smallest (full and isomorphically closed) subcategory 

of <% containing st and being closed under formation of subobjects and products. 

Example. The category of completely Hausdorff spaces (and continuous maps) 
is the smallest subcategory of the category &~ of topological spaces (and continuous 
maps) containing the space R of real numbers and being closed under formation 
of subobjects and products in S'. 

Problem. If # is not balanced, find a "nice" condition on X such that X e 
e \Q?st\ together with this condition implies X e \R^st\. 
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