
Toposym 3

E. H. Kronheimer
Very unlatticelike ordered spaces

In: Josef Novák (ed.): General Topology and its Relations to Modern Analysis and Algebra,
Proceedings of the Third Prague Topological Symposium, 1971. Academia Publishing House of the
Czechoslovak Academy of Sciences, Praha, 1972. pp. 259--261.

Persistent URL: http://dml.cz/dmlcz/700729

Terms of use:
© Institute of Mathematics AS CR, 1972

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/700729
http://project.dml.cz


259 

VERY UNLATTICELIKE ORDERED SPACES 

E. H. KRONHEIMER 

London 

All partial orderings < ("strictly precedes") are to satisfy p<q<p=>p = qi 
the converse implication may, but need not, hold — indeed a point which strictly 
precedes itself will be called singular. The reflexive relation ^ ("precedes") is 
associated with < in the usual way (p g q iff p < q or p -= q); and we write 

L(q) = {x\x<q}, L[Q] = U L(q) . 

A non-void subset D of a partially ordered set is directed (resp. strictly directed) 
if, given two points in D9 there exists a point in D succeeding (resp. strictly succeeding) 
both; D is a strict ideal if it is strictly directed and contains all the predecessors 
of each of its points. Call L[Q] the set generated by Q: then every strictly directed 
set generates a strict ideal, and every strict ideal generates itself. Any set of the form 
L(q) is called a principal strict ideal. 

Borrowing a term from Michael [2], we call a partially ordered set a cushion 
if it satisfies any of the following equivalent conditions: 

(a) Every point has a strict predecessor; and9 whenever pi9 p2 < r9 there 
exists q satisfying pl9 p2 < q < r. 

(b) Every directed subset generates a strict ideal. 
(c) Every principal strict ideal is a strict ideal. 

We equip each cushion with the topology determined by the base {<p, ?]}p<€, 
where <p, q\ = {x | p < x ^ q}. The singular points of a cushion are then its 
isolated points, and it is Hausdorff if and only if p = q whenever L(p) — L(q). 
A subset S of the cushion X is called a subcushion of X if S (with the restricted 
ordering) is itself a cushion whose topology coincides with its topology as a subspace 
of X. A function / between cushions is called a cushion map if it is continuous and 
p < q implies f(p) < f(q). 

Example 1. Let £ be a normal T -̂space. (Somewhat weaker separation axioms 
are in fact sufficient.) Let cE denote the collection of its open subsets other than 0 and 
E9 ordered by putting U < 7 iff U" <=. V. Then cE is a Hausdorff cushion which 
is non-singular if and only if E is connected. If E9 F are normal 7\-spaces 
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and 9 : E -» F is a closed continuous surjection, then cO :cF -> cJB, where c0(W) = 
= 0-^FF], is a cushion map. 

Example 2. Let R" denote the non-positive real numbers and M be a pseudo-
metric space. Let kM denote the set M x R~, ordered by putting (ml9 rt) < (ml9 r2) 
iff d(ml9 m2) <r2 — rx. Then kM is a non-singular cushion which is Hausdorff 
if and only if M is Hausdorff (i.e., metric). If M, N are pseudometric spaces and the 
function <p : M -+ N satisfies d(q>(m1)9 q>(m2)) < X d(ml9 m2) for some fixed positive 
number X9 then the function kxq>: kM -* kN9 where kx cp(m9 r) == (cp(m)9 Xr)9 is 
a cushion map. 

A cushion in which every strict ideal is principal is called complete. Complete 
cushions have some pleasant properties. Let us, for instance, say that a net (sd)deD 

(on the directed set D) in a partially ordered space is increasing if d ^ e implies 
sd ^ se. Then a cushion X is complete (resp. Hausdorff) if and only if every increasing 
net in X has at least (resp. at most) one limit point. Again: every closedsubcushion 
of a complete cushion is complete, and every complete subcushion of a Hausdorff 
cushion is closed. The results we shall establish here are two more specific ones. 

Theorem 1. The cushion cE is complete if and only if the topological space E 
is compact. 

Proof. Assume first that JB is compact, and let 0> be an ideal in cE; then P* = 
= U P is open and non-void. Suppose Q is a non-void open set such that Q~~ cz P*. 

Since 0> covers Q~~9 so does some finite subcollection {Pl9..., Pm} of 3P. Since ^ 
is directed, some member of 0> contains all the Pt and hence contains Q~. It follows 
that Q e &. Since E §§ 0>9 this argument (with Q = F) shows that P* 4= E; so P* e cE. 
It also shows that L(P*) c 0>. On the other hand, if P e 0>9 then P < P' e & for 
some P'9 so that P" c P' c P*: therefore PeL(P*). It follows that 0> == L(P*), 
and hence that cE is complete. 

To prove the converse, assume E has an open cover <?U with no finite refine­
ment. Let "K denote the collection of all non-void sets expressible as finite unions 
of members of L\tff\. Then "T is a directed subset of cE which fails to generate 
a principal strict ideal; for if LfV*] = L(W)9 where We cE9 then (since f is actually 
strictly directed) each member of f is a subset of W9 contradicting the fact that TT 
covers E. 

Theorem 2. The cushion kM is complete if and only if the pseudometric 
space M is complete. 

Proof. Suppose M is a complete pseudometric space and P is a strict ideal 
in kM. Let 

r* = sup {r | (x, r) e P for some x e M} , 



E. H. KRONHEIMER 261 

and choose x09 xi9... in Af such that (xn9 r* — 2"")eP for each n. Then (xn) is 
a Cauchy sequence; and P = L(x*, r*), where x* is a limit of (x„). 

Conversely, suppose that kM is a complete cushion and (yn) is a Cauchy sequence. 
Define 

5„= -2 sup d(yn9yn+k). 

The set {(j;0, s0)9 (yl9 st)9...} is directed and therefore generates a strict ideal: call 
this L(q). Then q must be of the form (y9 0), and j; must be a limit of (yn). 

If X is a complete Hausdorff cushion a n d / : X - > X a cushion map satisfying 
a < f(a) for some a, then / h a s a fixed point. (To construct it, put a0 -= a9 an+t =-
= f(an). If the directed set {a0, a , , . . .} generates L(fr), then / (6) = 6.) Theorem 2 
shows that this result includes the Banach fixed-point theorem: for if <p : Af -» M 
satisfies ^ ( m i ) , <p(m2)) < A d(ml9 m2)9 where 2 < 1, and if m is any point of M, 
then (m, r) strictly precedes feA <p(m9 r) in the cushion kM for all sufficiently large — r; 
and if fcA<p has a fixed point, so has (p. (It may be noted that, working with reflexive 
orderings, one obtains, instead of propositions about the (complete) cushion kM9 

closely analogous propositions about (Dedekind a-complete) ordered sets. See [1].) 
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