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WHEN CATEGORIES OF PRESHEAVES ARE BINDING')

V. TRNKOVA and J. REITERMAN

Praha

Following [8], a category is called binding if every category of universal algebras
and homomorphisms can be fully embedded into it. If K is binding then every small
category — and, under the assumption of non-existence of a proper class of measur-
able cardinals, every concrete category — admits a full embedding into K ([6], [9]).
Particularly, every semigroup with unity can be represented as the semigroup of all
endomorphisms of an object of K. Categories with the last property will be called
semibinding.

While a lot of algebraic categories are binding ([4], [5], [11], [12], [13]), topo-
logical categories are often not even semibinding. Every semigroup of all continuous
mappings from a topological space into itself contains idempotents (constant map-
pings) and therefore a non-trivial semigroup without non-identical idempotents
cannot be represented in a topological category with continuous mappings as morph-
isms. Also the category of Hausdorff spaces and local homeomorphisms is not
semibinding ([10]).

In the present note we give a certain criterion how far a category is from being
binding. This is described by presenting the class Py of all partially ordered sets k
such that the category K* of presheaves in K over k is binding. If K has an initial
or a terminal object (all categories considered here have them both, namely, the
empty space and the one-point space) then K is binding if and only if Py is the class
of all non-void partially ordered sets. Thus, roughly speaking , the bigger Py is, the
nearer K is to being binding. Analogously, denote S the class of all non-void partially
ordered sets k such that K* is semibinding.

The aim of this note is to describe the classes Pg (or S) for some categories
familiar in topology. In particular the categories mentioned in Theorem 1 are binding.

The full text with proofs will be sent to Czechoslovak Math. J. The proofs of all
theorems except Theorem 4 use the space M, from [2].

Definitions and conventions. The symbol < will be used for full embedding.
As usual, every partially ordered set is considered as a thin category (¢ < b if and

only if there exists a morphism from a to b).

1) Preliminary communication.
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If K is a category, k a partially ordered set, denote by K* the category of pre-
sheaves in K over k (= covariant functors from the thin category k to K) and their
transformations.

Denote by P the class of all non-void partially ordered sets. Denote Py (or Sg)
the class of all k € P such that K* is binding (or semibinding, respectively).

The following three propositions are evident:

Proposition 1. Let a category K have an initial or a terminal object. Then
Py = P (or Sx = P) if and only if K is binding (or semibinding, respectively).

Proposition 2. If K < H then Py = Py and Sy < Sy.

Proposition 3. Let K < L < H. If Py = Py (or Sx = Sg) then Pg = P, = Py
(or Sg = S, = Sy, respectively). '

Theorem 1. Py = Sy = P for the following types of categories:

1) All subcategories of the category of metric spaces and open proximally
continuous mappings containing the category of metric spaces and open Lipschitz
mappings with bound 1.

2) All subcategories of the category of topological spaces and open continuous
mappings containing the category of T,-spaces and open local homeomorphisms.

3) All subcategories of the category of Ty-spaces and continuous locally
one-to-one mappings containing all local homeomorphisms.

Convention. If G = P, put
gen G = {keP; (3he G)(h < k)}.

Put A = gen{h,}, B=gen{l;}, C=gen{l,,1,}, D = gen{ky, ..., kys} (sce the
figure on page 449).

Theorem 2. Py = Sy = A for

1) all subcategories of the category of Hausdorff spaces and locally one-to-one
continuous mappings, containing either the category of compact Hausdorff spaces
and local homeomorphisms or the category of metrizable spaces and local homeo-
morphisms,

2) all subcategories of the category of Hausdorff spaces and open continuous
mappings, containing either the category of compact Hausdorff spaces and open
local homeomorphisms or the category of metrizable spaces and open local homeo-
morphisms.
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Theorem 3. Py = Sy = C for the following types of categories:

1) All full subcategories of the category of topological (or proximity or
uniform) spaces and continuous (or proximally continuous or uniformly continuous,
respectiuely) mappings, containing all metrizable spaces.
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2) All subcategories of the category of metric spaces and continuous mappings
containing the category of metric spaces and Lipschitz mappings with bound 1.

Theorem 4. P, = D, where & is the category of sets and mappings.

The following two theorems are consistent with the set-theory:

Theorem 5. Py = B, where K is the category of compact Hausdorff spaces
and continuous mappings.

Theorem 6. Py = C for all full subcategories K of the category of T-spaces
and continuous closed mappings containing all locally compact o-compact Haus-
dorff spaces. N

Note. Every compact Hausdorff space with the first axiom of countability has
the power <2 ([1]). Consequetly Py = 0 for a category of these spaces with any
choice of morphisms such that all homeomorphisms are included.
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