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SPACES WITH REGULAR ^-DIAGONALS 

P. ZENOR 

Auburn 

The proofs that are omitted in this note will appear in [6]. Recall that a subset H 
of the space X is a regular Gd-set if there is a sequence {Un} of open sets containing H 

00 00 

such that if = 0 Ut = f) t/f- A space X has a (regular) Gd-diagonal if {(x, x) : xeX} 
i = l i = l 

is a (regular) G5-set in X x X. In [2], Ceder obtains the following characterization 
of spaces with Gd-diagonals: 

Theorem 1. X has a G5-diagonal if and only if there is a sequence {@n} of open 
00 

covers of X such that if xeX, then x = H s t (*> 3f|)« 
i = i 

We have a comparable characterization of spaces with regular Ga-diagonals: 

Theorem 2. X has a regular G5-diagonal if and only if there is a sequence 
{&n} of open covers of X such that if x and y are distinct points of X, then there 
are an integer n and open sets U and V containing x and y respectively such that 
no member of <&n intersects both U and K 

From Theorems 1 and 2, it is quite easy to see that any paraqompact T2-space 
with a G5-diagonal has a regular G -̂diagonal. Also, it is a corollary to Theorem 2 
that any space with a regular Gd-diagonal is HausdorfF. 

A development {&n} for the space X is said to satisfy the 3-link property if it 
is true that if p and q are distinct points, then there is an integer n such that no 
member of &n intersects both st (p, <Sn) and st (q, <$n) (Heath [3]). According to 
Borges [1], a space X is a w.d-space if there is a sequence {̂ „} of open covers of X 
such that if x is a point and, for each n, xn is a point of st (x, 0B), then the sequence 
{x„} has a cluster point. 

Theorem 3. Let X be a topological space. Then the following conditions are 
equivalent: 

(a) X admits a development satisfying the 3-link property. 
(b) X is a wA-space with a regular Gd-diagonal 
(c) There is a semi-metric donX such that: 
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(i) If {xn} and {yn} are sequences both converging to x, then lim d(xn, yn) = 0. 
B-+00 

(ii) If x and y are distinct points of X and {xn} and {yn} are sequences con
verging to x and y respectively, then there are integers N and M such that ifn>N, 
thend(xn,yn)>l\M. 

According to Morita [5], a space X is an M-space if there is a normal sequence 
{&„} of open covers of X such that if x is a point and, for each n, xn is a point of 
st (x, <&n), then the sequence {xn} has a cluster point. 

Theorem 4. If X is a topological space, then the following conditions are 
equivalent: 

(a) X is metrizable. 
(b) X is a Tx-M-space such that X2 is perfectly normal. 
(c) X is an M-space with a regular G5-diagonal. 
(d) X is a Tt-M-space such that X3 is hereditarily normal. 
(e) X is a Tx-M-space such that X3 is hereditarily countably paracompact. 
(f) X is an M-space that admits a one-to-one continuous function onto a metric 

space. 

Finally, in [1], Borges shows that if X is paracompact, locally connected and 
locally peripherally compact, then X is metrizable if and only if X has a G -̂diagonal. 
Borges' result follows as a corollary to the following theorem: 

Theorem 5. IfX is locally connected and locally peripherally compact, then X 
is metrizable if and only ifX has a regular Gb-diagonal. 

Proof. Let \%n} be a sequence of open covers of X such that each member 
of 0Un is connected and such that if p and q are distinct points, then there are open 
sets U and V containing p and q respectively and an integer n such that no member 
of ^ln intersects both st (p, %n) and st (q, <%n). We will first show that {^J is a de
velopment for X. To this end, let x e X and let U be an open set containing x. There 
is an open set Vwith a compact boundary such that xeVc: U. Suppose that, for 
each n, there is a member, say gn, of <%n that contains x and intersects X — V. Then, 
since each gn is connected, there is a point xn of the boundary of Fthat is in gn. Since 
the boundary of Kis compact, the sequence {xn} has a cluster point, say x0. It follows 

00 

that x0 e H cl (st (x, <%„)) which is a contradiction. It follows that X is developable. 

By Theorem 3, there is a development {Sn} for X that satisfies the 3-link property. 
Since X is locally connected, we may assume that, for each n, the members of 9m 

are connected. Let x denote a point of X and let U be an open set containing x. 
We will show that there is an integer n such that if g e &n and g n st (x, 0„) 4= 0, 
then g ciU.lt will then follow that X is metrizable by Moore's Metrization Theorem 
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[4]. To this end, let Fbe an open subset of U containing x with compact boundary. 
Suppose that, for each «, there are members Un and Vn of ^n such that x e UH9 Un n 
C> Vn #= 0, and (Un n Vn) n (X — V) =}- 0. Since, for each «, l/rt u F„ is connected, there 
is a point xw of Un u Vn in the boundary of V. Since the boundary of V is compact, 
there is a cluster point, x0, of {x„}. But it follows that, for each n, there is a member 
of <&n that intersects both of st (x, ^n) and st (x0, <£„) which is a contradiction, from 
which the theorem follows. 
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