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REMARKS ON DIMENSIONS OF MAPPINGS 

J. HEJCMAN 

Praha 

In the dimension theory, besides the dimension of spaces, the dimension of 
mappings is often examined. If X9 Y are topological spaces, / ;X -» y a continuous 
mapping, we put dim/ = sup {dim/ -*1^] | y e Y}. Similarly for uniform spaces, in 
addition to the uniform dimension Ad of spaces (see [2]), a uniform dimension of 
mappings can be defined. If (X9 °U), (Y9 if) are uniform spaces, f :X-+Ya uniformly 
continuous mapping, then Adf ^ n means that for each U in <% there exist Kin 'f 
and W in ^ such that for any F-small subset M of Y there exists a W-cover JT of 
/ - 1 [ M ] consisting of IT-small sets and such that each point of /"^[M] belongs to 
at most n + 1 sets of Jf. Some results are stated in [1], let us mention here three 
properties only. 

(a) If/ maps a uniform space X onto a one-point space then Adf — Ad X 
(therefore the same symbol Ad is used). 

(b) If g is the restriction of/ onto a dense subspace then Adg = Adf 
(c) If f:X->Y, then AdX £AdY+ Adf 

If X, yare normal (7\) topological spaces, we may consider the spaces endowed 
with some uniformities such that every continuous mapping f :X ~*Y becomes 
uniformly continuous and search for a connection between dim/and Adf This also 
enables us to derive some results on dim from the properties of Ad. We have the 
following theorems. 

Theorem 1. LetX be a normal space, Ya paracompact space, f ;X ->Ya closed 
continuous mapping. If both spaces X and Y are endowed with the fine uniformity\ 
then Adf = dim/. 

Theorem 2. Let X be a normal space, Ya paracompact space, f :X -*Ya closed 
continuous mapping. Suppose Y is compact or dim yis finite. If both spaces X and Y 
are endowed with the Cech uniformity, then Adf = dim/. 

Using Theorem 1 or 2, the equality of Ad and dim for both spaces and the above 
property (c), we immediately obtain the following version of Hurewicz theorem: 
/ / X is a normal space, Y a paracompact space, f :X -+Y a closed continuous 
mapping, then dim X g dim Y + dim / This result was also obtained by Pasynkov 
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[3]. His proof is essentially based on the same theorem for both X, Y paracompact 
which was proved by Skljarenko by means of the theory of sheaves. 

Let X, Y be spaces endowed with the Cech uniformity, / : X -> Y a continuous 
mapping, Pf the extension of/ onto the Cech-Stone compactifications, which are the 
completions of the spaces X and Y. Then the above property (b) and Theorem 1 or 2 
imply Adf = Ad Pf = dim pf Thus Theorem 2 also concerns the equality of dim/ 
and dim Pf The additional assumption on the space Y in Theorem 2 cannot be 
omitted, which can be shown by an example. In this example, we also construct a 
closed continuous mapping / : X -> Y with dim/ = 0 (moreover with finite pre-
images of points), but dim Pf > 0; the spaces X, Y are metric, locally compact 
and c-compact. The construction essentially depends on the following lemma. 

Lemma. Let Gl9..., Gn be open sets which cover the n-dimensional cube In. 
Then at least one set Gj contains a component which joins two opposite faces of 
the cube /". 

A detailed paper containing the proofs of all assertions is intended for public­
ation in Czechoslovak Mathematical Journal. 
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