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ON INTERNAL CHARACTERIZATIONS OF COMPLETE 
REGULARITY AND WALLMAN-TYPE COMPACTIFICATIONS 

P. HAMBURGER 

Budapest 

To give an internal characterization of Tychonoff spaces, O. Frink [2] generalized 
the method introduced by Wallman [7] to provide Hausdorif compactifications 
for Tychonoff spaces. His procedure uses a normal base of closed sets instead of the 
family of all closed sets employed by Wallman. A base for the closed sets is a normal 
base if it is closed under the operations of finite unions and finite intersections, 
and satisfies the following conditions: 

(i) for any element H of the base and any xeX\H there are two elements Hl9 

H2 of the base such that 

H±vH2=X9 x$H29 H x n H = 0 , 

(ii) for any two disjoint elements Hi9 H2 of the base there are two elements 
H'9 H" of the base such that 

H' u H° = X , H i c X \ H', H2<zX \ H". 

Frink raised the following questions: 

Let I b e a compact Hausdorff space and Y a dense subset of X; is there any 
normal base 93 of the closed sets of Y such that the Wallman-type compactification 
of Y, w(Y9 93) is homeomorphic to XI 

He also asked whether 95 can be chosen such that every element of 93 is a zero-
set. Such compactifications will be called z-compactifications. 

E. F. Steiner [6] proved that if there is a normal base of closed sets of a compact 
space X such that every element of the base is a regular closed set then X is a Wall-
man-type compactification of each of its dense subsets. 

In this case, we shall say that X is a regular Wallman compactification of each 
of its dense subsets. He also proved that every compact subspace of the real numbers, 
or every product of compact subsets of real numbers is a regular Wallman com
pactification of each of its dense subspaces. 

Theorem 1. ([4]) Every (totally) orderable compact space and even every 
product of orderable compact spaces is regular Wallman-type and, moreover, 
a z-compactification of each of its dense subsets. 
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J. de Groot and J. M. Aarts [1] gave another internal characterization of 
complete regularity which is a generalization oť Frink's theorem and naturally fits 
between regularity and normality. 

To generalize this, we introduce the following notions: 

Definition 1. Two subsets A and B of a space X are said to be screened by afinite 
family 93 if 33 covers X and each element of 33 meets at most one of the sets A and B. 

We shall say that two subsets A and B of a space X are screened by the closed 
(sub) base X of X if A and B are screened by a finite subcollection of X. 

Definition 2. Two subsets A and B of X are said to be weakïy screened by X 
if there are At e X9 i = 1,..., n and Bj є X, j = 1,..., m such that 

AaІjAi9 Bcz\JBj 

/ = i i-=i 

and for every i = 1,..., и, j = 1,..., m the subsets At and Bj are screened by a finite 

subcollection of X. 

Theorem 2. A space X is completely reguìar if and only if there is a sub-
base Xfor the closed subsets ofX such that: 

(1) (Weak subbase-regularity.) If SєX, xфS, then S and {x} are шakly 
screened by X. 

(2) (Weak subbase-normality.) Every two disjoint elements of X are weakly 
screened by X. 

The proofs of these theorems can be found in [4] and [5]. 
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