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RELATIONS BETWEEN ©-COMPLETENESS 
AND m-PARACOMPACTNESS 

K. WICHTERLE 

Praha 

This communication studies the relations between m-paracompactness and 
33-completeness for some classes 33 of directed sets. Most of the results are similar 
to [4], but the proofs are new and more simple. We shall show that m-paracompact­
ness implies 9tm-completeness in completely regular spaces. Equivalence between 
these two notions does not hold in general, but it takes place when the space is 
supposed to be a generalized order closure space (Theorem 2). The rest of the paper 
is devoted to the closed relations in 33-spaces. 

33 denotes any class of directed sets, 91 the class of monotone ordered sets, 
9tm = {<D, -<> e 9t1 card D ^ m}; a net is called 33-net iff its domain belongs to S3. 
A net N is called remarkable in 0 = <P, u> iff /<> 1V converges in I = [0, 1] for 
each fe C = # (^ , I), equivalently, if the range of N is in 0* and N converges in 
/K-P» "> (u being the completely regular modification of u). A closure space 0 
is called Si-complete iff every 33-net remarkable in 0> converges in 0> (contrary to [3], 
we do not suppose in this definition that 0 is a 33-space). 

Theorem 1. For every cardinal number m, every xu-paracompact completely 
regular space is 9tm-complete. 

Proof. Let 0 = <P, u> be an m-paracompact completely regular space. 
It is sufficient to prove that each non-convergent 9tm-net is not remarkable. Let N 
be such a net. Without loss of generality we may assume that N is one-to-one and 
such that DJV = <a, e> where a ^ m is a regular ordinal. 

Let us denote Un = P - UN[IJ, ->] for each r\ < a. Then % = {Un | r\ < a} 
is an increasing open cover of 0* (this follows easily from the fact that N does not 
converge) and card % ^ m. Therefore, by [2], there exists a locally finite open cover 
2£ such that {uZ | Z 6 %} refines ^ . 

We shall construct an increasing map d : a -• a and a disjoint and locally finite 
family {V^ | f < a} of open neighbourhoods of points Nd£. 

Transfinite induction, q = 0 : dO = 0, V0 = U0 n Z0, where Z0 e «2f, NdO e Z0 

and U0 is an open neighbourhood of Nd09 which intersects only finitely many 
members of 2£. 

Let 0 < i/ < a and suppose that d£, V4 and Z{ have been defined for all £ < r\. 
Since a is regular and since u[^T] refines °ll, then exists a X < a with NX £ 
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$ u U{Z$ | £ < *?}• There exists a Z, e 2£ with JVA e Zn and an open neighbourhood 
Un of the point JVA, which interesects only finitely many members of 2£. For the 
induction step it remains to define: 

A = <fy, K , « U , n Z , - u U { Z « | « < i | } . 

For each £ < a we can choose a ^ e C such that fl^[P — F j = {0}, 0£-Vd£ = 1. 
If S and a — S are cofinal subsets of a, the function g = £{#51 £ e S} is correctly 
defined, continuous and belongs to C. Moreover, gN is equal to 1 and 0 respectively 
on cofinal subsets d[S~] and d\a - S] of a, hence gN does not converge in I. Thus N 
is not remarkable, which completes the proof. 

Proposition 1. Ifsome proper maximal filter <J, :D> ofopen sets of a completely 
regular space & belongs to 93 (or is a quotient of some element of 93), then & is not 
IB-complete. 

The proof is obvious: A net {Nv | U ej}9 where Nv e U, converges to j in fl0>. 
Therefore, for separated spaces and sufficiently large 501, the ^-completeness 

coincides with compactness (and hence with 9l-compactness). On the other hand, 
any infinite discrete space is 9t-complete. 

Proposition 2. Every product of completely regular paracompact spaces is 
Si-complete. 

To prove Proposition 2 notice that any 93-completeness is a productive prop­
erty, and apply Theorem 1. 

Proposition 2 enables us to show that the only if part in Theorem 1 cannot 
be true in general: Any non-paracompact product of paracompact spaces (e.g. Sorgen-
frey's square) serves as an example of a non-paracompact 9t-complete space. 

Theorem 2. A generalized order closure space is 9tm-complete if and only if 
it is m-paracompact. 

Proof. Assume 0* = <P, u> is not m-paracompact. Without loss of generality 
we may assume that there exist an open-closed interval-like subspace 2! of ^ , a point 
z e g ' , a regular ordinal y ^ m and an increasing net N = {N£ | £ e y} such that the 
open cover W = {]z, N£{ | ^ e y} of Q = Q' n ]z, -»[ is not uniformizable. N does 
not converge. The existence of such ^follows by [2]; for the details, see [4]. 

Suppose foN does not converge in I for some / : P -* [0,1]. Then foN 
is frequently in two sets A and B separated in I and we can choose an increasing 
map h : y -» y such that No h lies alternately in Z ' 1 ^ ] and Z " 1 ^ ] . For each 
t e Q we can define the minimal mt e a such that t = Nhmt; then ]z, Nh(mt -f- 1)[ 
is a neighbourhood of t. Since it is not uniformizable, there exists (see [1], p. 435) 
R c Q and y e uR - U{]z, Nh(mt -*- 1)[ | t e R}. We can prove that y e uf~l[B] n 
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n u / " " 1 ^ ] , hence / is not continuous. Therefore, N is remarkable and 0* is not 
5Rm-complete. 

Let X be a SR-compact space (which means that every 95-net ranging in X has 
an accumulation point in X), let the Cartesian product X x X be a 93-space (i.e., its 
closure u is determined by a convergence of 93-nets). Then the composition of any 
two (or finitely many) closed relations is a closed relation (i.e., (uR = R c I x 
x X&uS = S aX x X)=>u(RoS) = RoS). 

The problem arises whether the product of two closed relations is closed, provided 
that X is a 93-compact 93-space for some 93. 

Let X be separated, let D be discrete in X, let M be a net converging to x in X, 
let N be a net converging to y =# x in X such that X0 ^ card EM = card EN ^ 
^ card D. Then there exist closed equivalences R and S on X such that neither 
R o S nor its transitive envelope is closed. 
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