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ON CARШNAL INVARIANTS 

A. V. ARCHANGELSKIJ 

Moskva 

We call cardinal invariants such topological invariants which assume values 
in the class of all cardinal numbers. These invariants play a very important role 
in all branches of general topology. The first of them appeared at the earliest stages 
of development of general topology and showed their importance at once. For 
example, the second axiom of countability is the basic condition in the classical 
metrization criteria of Urysohn. The weight of a space X (denoted w(X)), the charac­
ter of a point x in the space X (denoted ^(x, X)) are other examples of classical 
cardinal invariants. The cardinal-valued topological invariants are very essential in 
many theorems on classification of topological spaces and continuous mappings. 
Even the bicompactness property may be considered from this point of view — the 
definition of bicompactness in terms of complete accumulation points shows it clearly. 

The constant and reasonable use of cardinal invariants in different areas of 
general topology stimulated the appearance of many new interesting invariants 
of this kind. So it became quite necessary to clarify the interrelations between them — 
in other words, to classify them, to develop their theory. 

Many good results were obtained in this direction in the course of the last five 
years. I do not intend to give a full survey. This would need a book. In fact, such 
a book has been written recently by a well-known specialist I. Juhasz. I will present 
mainly some of my results. 

The notation follows that in [3]. In particular, I write c(X) for the Suslin number 
of the space X, i.e. for the least infinite cardinal T such that the cardinal of every 
disjoint family y of nonempty open subsets of the space X is ^ T . I put cc(X) = 
= sup {c(Y) : Y c= X). All spaces considered are Hausdorff. 

1. Here I describe some circumstances in which the condition c(X) = K0 

implies paracompactness or even metrizability of X. 

1.1. Theorem. If X is a Cech-complete o-metacompact and c(X) = M0, then X 
is Lindelof. 

(Following F. D. Tall I call a space X <r-metacompact if each open covering 
of this space has a <x-point finite open refinement. Hence all metacompact and all 
screenable spaces are <7-metacompact.) 
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The crucial role in the proof of this theorem is played by the following: 

1.2. Lemma. If X is Cech-complete, c(X) = K0 and y is a point finite family 
of open sets in X9 then \y\ S ^o-

The following result constitutes an essential step in the proof of this lemma. 

1.3. Lemma. If c(X) = X0, k is a natural number and y is a family of open 
sets in X such that no point ofX belongs to more than k elements ofy, then \y\ g X0. 

Notice that we do not suppose here the space X to be tech-complete. 
Besides Theorem 1.1, other interesting conclusions follow from Lemma 1.2. 

Let us show now some of them. 

1.4. Theorem. If X is metacompact, locally Cech-complete and has locally 
a countable Suslin number9 then X is strongly paracompact. 

1.5. Theorem. IfX is o-metacompact locally bicompact perfectly normal space9 

then X is strongly paracompact. 

1.6. Theorem. If X is a Cech-complete space with a o-point finite base 0$ 
and c(X) rg K0, then the base 01 is countable (and X is metrizable). 

Pixley and Roy constructed (in an appropriate model of the set theory) an 
example of a non-metrizable completely regular space X with the uniform base 0$ 
(in the sense of P. S. Alexandrov) such that c(X) = K0. As each uniform base 0% 
is cr-point finite it is not possible to extend Theorem 1.6 to all non-Cech complete 
spaces. (Maybe such an extension is possible in some models.) 

Of course, each a-point finite base is point countable. So in connection with 
Theorem 1.6 the following question seems to be very interesting. 

1.7. Problem. Let X be a Cech-complete space with a point countable base 0$ 
and c(X) ^ K0. Is it true then that the base 0} is countable? 

2. The remaining part of this article is devoted to an exposition of results 
on interrelations between cardinal-valued invariants. In the end the reader will find 
himself completely surrounded by a host of unsolved problems. 

I would start with the following example of a result typical for this area. 

2.1. Theorem. (A. Hajnal and I. Juhasz, [8]). IfX is first countable and c(X) = 
= K0, then \x\ ^ 2Ko. 

An interesting and important generalization of the notion of first countable 
space is the notion of sequential space. A space X is called sequential if all sequentially 
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closed subsets of X are closed (see [17]). A space X is called Fr6chet-Urysohn 
space (Fl/-space) if for each zeX and each A c= X such that x e [A] there exists 
a sequence {att:n = 1,2,...} of points belonging to A which converges to x. 
Evidently, each Fl/-space is sequential but not conversely. Even a bicompactum 
exists which is sequential, but not an Fl/-space [17]. 

Obviously, each subspace of an F£/-space is again an Fl/-space. Hence each 
subspace of an FLT-space is sequential. But a subspace of a sequential space need 
not be sequential. It is easy to see that a sequential spece X is an Ft/-space if and 
only if each subspace of the space X is sequential. In fact, a stronger result holds: 
X is an FC/-space iff each subspace of X is a fe-space [5]. It is worth noticing that 
the T-product of an arbitrary family € of real lines (or, more generally, of complete 
separable metric spaces) is an F£/-space ([18]). As the product has a countable 
Suslin number and the ^-product is dense in the product, we conclude that the Suslin 
number of the T-product is also countable. So we have exhibited an Fl7-space X 
such that c(X) ^ N0

 a nd \x\ = |{|. And the cardinality of £ may be as high as we 
wish. It is easy to see that %(x, X) = \%\ for each xeX. Hence we have proved the 
following: 

2.2. Assertion. For each cardinal T ^ K0 there exists an FU-space Xt such 
that c(X) ^ K0, \X\ = T and x(x,X) ^ T for all xeX. 

This means that Theorem 2.1 cannot be extended to the class of all Fr6chet-
Urysohn spaces. But the situation miraculously changes to the best if we concentrate 
our attention on the class of all bicompact Hausdorff spaces. Of course, for each 
cardinal T there exists a bicompactum X such that \x\ ^ T and c(X) = K0 — take 
for example 9X or V (where / = [0,1] and 3 = {0,1}). On the other hand, the 
(Alexandroff's) one point bicompactification At of a discrete space of cardinality 
T ;> K0 enjoys the following properties: At is first countable at all points but one; 
At is sequential; At is not homogeneous; |^4t| = T; C(A^ = T; At is a bicompact 
Hausdorff space. Results which follow show us that these properties bunched together 
not by chance. 

2.3. Theorem. 1/ 2Xo = Kt and X is a bicompact (Hausdorff) sequential space, 
then the set of points in which X is first countable is dense in X [3]. 

The crucial point in the proof is the following: 

2.4. Lemma. If X is a bicompact sequential space and U is a nonempty open 
subset in X, then there exists a non-empty closed set P c X such that: (ix) P c U; 
(i2)x(P,X)?zKo;(h)\P\£2«°[3l 

Using this lemma and the well known Ramsey type theorem proved by Erdos 
and Rado, we arrive also to the following result: 
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2.5. Theorem. If X is a bicompact sequential space and c(X) z% tt0, then 
\X\ z% 2Ko [3]. 

It is useful to look now once more at the spaces Ax. 

2.6. Theorem. If X is a sequential bicompact homogeneous space, then either 
\X\ = 2*° or \X\ < K0. 

Let us sketch the proof of this theorem to reveal the close interrelations between 
the results mentioned above. 

From 2.4 it follows that %(x, X) ^ 2No for some xeX. As X is homogeneous, 
x(x,X) ^ 2**° for all xeX. In [2] was proved that if X is a bicompact sequential 
Hausdorff space such that x(x, X) = 2Xo for all x e X, then \x\ z% 2*°. If X has an 
isolated point, then X is finite. If there are no isolated points in X, then \x\ ^ 2*° [1]. 
So in this case \x\ = 2Ko. 

With the aid of GCH (which means: 2X = T+ for each T ;> X0) we can prove 
the following 

2.7. Theorem. IfX is a homogeneous bicompactum, then \X\ is an isolated car­
dinal number [3]. 

Now, we turn to some generalizations naturally connected with the notion 
of a sequential space. 

3.3.1. Let X be a topological space and T a cardinal number different from zero. 
For a n y i c j f put [A]x = \J{[B] : B c A and |B | ^ T}. 

It is easy to see that always [[-4]t]t = [_4]t; moreover, the operator [ ] t is 
a closure operator on X for some topology on X which will be denoted by 9~x 

provided the given topology on X is denoted by 3~. 

3.2. We say that A c X is a Gt-set (in X) if there is a family y of open subsets 
of A' such that (){U : U e y} = A and |y| z% T. 

Put [A]x = {x eX: if x e Q and Q is a Gt-set, then Q n ./! 4= A}- Obviously, 
[[-4]']1 = [A]x. The operator [ ]T is a closure operator for some topology on X 
which will be denoted by Fx. Evidently, Fx => &~ and &x 3 3~. Usually, Fx and 9~x 

are not comparable and in general, the formula &"* n 2TX = P does not hold, 

3.3. For example, let H = (J, 2^) be the space which we obtain by declaring 
all countable subsets of the segment J = [0,1], as well as the subsets of I which are 
closed in the usual topology, to be closed. F. Hausdorff was the first who considered 
this space. I list some important properties of H: 1) cc(H) ^ tt0; 2) S(H) > K0; 
3) \j/(x9 H) = N0 for each x e H; 4) [A]«0 = A for each A cz H; 5) [A]«° = A for 
each AczH; 6) 2T^ = ^ K o - discrete topology, hence 7) -TKo n F*0 4= .T 
(because if is not discrete). 
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3.4. Theorem. [4] If X is bicompacU then for each A c X and each x > 0 

[ w j - w • 
I think that this is really an important formula. The proof of this formula, if not 

long, is not trivial. I wish also to underline that it is extremely general. To derive 
some valuable consequences from the formula we need two definitions. 

3.5. Let X be a space. The least cardinal number T such that [A]t = \A\ for 
each A <= X is called the tightness of X and is denoted by t(X). Of course, t(X) ^ 
^ x(X) ^ vv(X) for each X. If X is sequential, t(X) ^ K0. But the converse to the 
last assertion is not true: If X is countable, then clearly t(X) g K0. However, it is 
easy to construct a countable space X which is not sequential: take for X the set 
N u ^ c jSIV, where £ e /W \ iV and N u ^ is considered as a subspace of pN 
(pN is the Stone-tech bicompactification of a countable infinite discrete space N). 

3.6. Let X be a space and T a cardinal number. Suppose that for each ordinal 
a < T a point xa e X is chosen. Then we say that ^ = {xa : a < T} is a.free sequence 
of length T if for each /? < T the following condition holds: 

[ { x a : a < j 5 } ] n [ { x a : ^ ^ a } ] = A . 

Obviously, points of a free sequence in X constitute a discrete subspace of X. Of course 
this subspace may not be closed. If a closed discrete subspace Y of X is given, any 
minimal well ordering on Y makes Y a free sequence. Obviously, not each discrete 
subspace of X can be represented as the set of all points of a free sequence. But each 
countable discrete subspace is the set of all points of some free sequence. 

3.7. Theorem. Let X be a bicompactum. Then t(X) = sup {T : there is a free 
sequence of the length T in X}. 

The proof of Theorem 3.7 heavily depends on Theorem 3.4. 

3.8. Corollary. If X is a bicompactum, then t(x) ^ cc(X). 

B. Shapirovskij - a student of mine — was the first to formulate and prove this 
last assertion. A few days later, knowing the Shapirovskij's result but not its proof I 
gave an independent proof of 3.8. Working on this proof I found Theorems 3.4 and 
3.7. The assertion 3.8 may be easily generalized in the following way: 

3.9. Corollary. If X is a k-space, then t(x) ^ cc(X). 

Besides the results mentioned above and the following theorem almost nothing 
is known about the tightness — even in the case of bicompact HausdorfF spaces. 
Hence more attention should be paid to the following positive fact. 
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3.10. Theorem. If X is a dyadic bicompactum, then t(X) = w(Z). 

The proof of this assertion, given in [19], makes use of the notion of Dante's 
space (see [19]) and is based essentially on the Hewitt-Marczewski-Pondiszeri's 
theorem. 

3.11. Corollary. IfX is a dyadic bicompactum, then cc(X) = w(.X). 
To prove it, we simply combine 3.8 and 3.10. The original Efimov's proof of 3.11 

is rather complicated (see [7]). 
It is remarkable that Theorem 3.10 includes also the following well known 

assertions: 

3.12. Corollary (A. S. Esenin-Vol'pin). If X is a dyadic bicompactum, then 
X(X) = w(X). 

3.13. Corollary (A. V. Arhangel'skij). / / a dyadic bicompactum X is a factor-
space of some metric space, then X is metrizable. 

Another series of corollaries of 3.8 holds in a special model of the set theory. 

4. There exists (see [14], [10]) a model of set theory in which the following 
assertion is true: 

4.1. (TAM) If X is a space such that c(X) = tt0- then for each uncountable 
family % of non-empty open subsets of X there exists an uncountable subfamily 
r\ c £ which is centered. 

4.2. Theorem. / / (TAM) holds and X is a bicompactum such that cc(X) ^ K0, 
then each subspace ofX is separable. 

In other words, if (TAM) holds then bicompact Hausdorff space is hereditary 
separable if and only if each discrete subspace of this space is countable. The proof 
of the fact is non-trivial. We essentially use the relation t(X) ^ cc(X) ^ K0, which 
holds by 3.8 (see [5]). 

4.3. I. Juhasz proved that if (TAM) holds and X is a first countable bicompact 
Hausdorff space such that c(X) = X0, then X is separable [10]. 

There exist such models of the set theory in which not only (TAM) is true but 
the following relations also hold: 2No = 2K| = K2. In any of these models the fol­
lowing theorem may be proved: 

4.4. Theorem. IfX is a sequential bicompactum such that c(X) = N0, then X 
is separable. 
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In the proof, Lemma 2.4 plays a very important role. D. Kurepa [11] proved 
that the product X of an arbitrary family {Xa : a e A} of spaces such that c(X) = 
= T ̂  X0 for each A has a Suslin number not greater than 2T (see also [9]). In his 
other very elegant work [20] D. Kurepa proved that if X is a topological space, 
its topology being induced by a linear order on X, and c(X x X) = X0, then s(X) ^ 

Now from the arguments in [15] (see also [12]), it is clear that the following 
very remarkable theorem holds: 

4.5. Theorem. / / (TAM) is true, X = \[{Xa :<xeA) and c(Xa) = K0 for each 
ae A9 then c(X) = K0. 

The technique developed to prove the results of the last group yields some 
conclusions of absolute character — which are true in all reasonable models. 

We shall use now the following notation: ss(X) = sup {s(Y) : Y c: X}. Here s(Y) 
stands for the density of Y. 

4.6. Theorem. Let X be a bicompactum, % a cardinal number and, for each 
closed subspace Y of the space X, s(Y) = T. Then ss(X) ~ T. 

We sketch here the proof of 4.6. From the assumptions about X it follows that 
cc(X) ^ K0. By 3.8 we have then t(X) ^ K0. It is sufficient now to use the following 
simple 

4.7. Lemma. If X is a space, Y a subspace of X, x a cardinal number and 
(a) [Y] = X; (b) t(X) = T; (C) S(X) ^ T; then s(Y) £ T. 

Although the following part is devoted mainly to problems, it involves also 
a discussion of problems and in its course we also mention some new interesting 
results. 

5.5.1. Problem. Is there a bicompactum X such that \x\ ^ 2Ko, c(X) = X0 

and s(X) > K0? It is easy to prove that if (TAM) holds and \x\ = #l9 c(X) = K0, 
then s(X) ^ K0. But as far as I know it is not known whether (TAM) is consistent 
with 2**° = Kx. A. Hajnal and I. Juhasz have proved recently that if (TAM) holds 
and X is a bicompactum such that n-weight of X is less than or equal to Kt and c(X) = 
= tt0, then X is separable [13]. 

5.2. Problem. Let X be a Lindelof space in which each point is a G -̂set. Is it 
true then that \X\ = 2*°? 

In [2] I showed that the answer is yes if X is first countable Lindelof space. 
Now I have the following result: 
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5.3. Theorem. IfX is a regular LindeWf space such that {x} is a Gs-setfor each 
xeX and t(X) ^ K0, then \x\ £ 2*°. 

Is it possible to extend this result from regular to Hausdorff spaces? 

Problem 5.2 would be settled in the positive way if we could prove one of the 
following two hypotheses: 

5.4. Hypothesis. If X is a Hausdorff space and each point of X is a G$-set in X, 
then there exists a first countable Hausdorff space Y which is a one-to-one continuous 
image of the space X. 

5.5. Hypothesis. If X is a regular Lindelof space and each point of X is a G -̂set 
in X9 then there exists a first countable Hausdorff space Y which is a one-to-one 
continuous image of the space X. 

5.7. Problem (A. Hajnal and I. Juhasz). Let X be a bicompactum such that 
ss(X) ^ K0. Is it true then that \x\ g 2*°? 

5.8. Problem (A. Hajnal and I. Juhasz). The same question as in 5.7 for 
an arbitrary Hausdorff space X. 

5.9. Problem (B. A. Efimov). Is it true that for each infinite bicompact Hausdorff 
space X one of the following two alternatives holds: 

1. X contains a non-trivial convergent sequence of points; 
2. X contains a topological copy of pNl 

Problems 5.7 and 5.9 are closely connected with the following group of problems. 

5.10. Problems. Let X be a bicompactum such that t(X) g X0. Which of the 
following assertions 5.10.1 — 5.10.5 are then true? 

5.10.1. X is sequential. 

5.10.2. If 2No = Kj, then X is first countable at some point. (See 2.3.) 

5.10.3. If c(X) = N0, then \x\ £ 2*°. 

Notice that if ss(X) ^ K0, then t(X) ^ N0 and c(X) = K0. Look now at 5.7. 
See also 2.5. 

5.10.4. If \x\ ^ K0, then X contains a non-trivial convergent sequence of points. 

5.10.5. If(TAM)and2Ko = 2*1 = K2 holds, and c(X) = tf0, then X is separable. 
(See 4.4.) 

5.11. Problem. Let X be a bicompactum and cc(X) § tf0.
 I s & t r u e t h e n t h a t 

s(X) £ K0? (See 4.2.) 
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5.12. Problem. Is it true that if for each closed subspace Y of a completely 
regular space X, s(Y) ^ T, then s(Z) ^ T for each subspace Z of the space XI (See 4.6 
and 3.3.) 

5.13. Problem. Let X be a completely regular space such that cc(X) ^ T. 
Is there a bicompact Hausdorff extension bX of X such that cc(bX) ^ T? 

5.14. Problem. The same question as in 5.13 for X such that s(Y) ̂  r for 
each closed subspace Y of the space X. (We do not seek for a stronger conclusion.) 

5.15. Problem. Which spaces of countable tightness can be realized as sub-
spaces of a sequential spaces? (Clearly each subspace of a sequential space has count­
able tightness; more generally, t(Y) ^ t(X) as soon as Y is a subspace of X. Let us 
remark that not each countable space is a subspace of a sequential space.) 

5.16. Problem. Which spaces are homeomorphic to subspaces of bicompact 
Hausdorff spaces of countable tightness, of sequential bicompact Hausdorff spaces, 
respectively? 

It is true that if X is a bicompactum such that c(X) ^ K0 and t(X) ^ tt0, then 
\X\ ^ 22 ° (look now once more at 5.10.3). Hence not every FC/-space has a bicom-
pactification with countable tightness (for the proof take an appropriate .T-product — 
see the arguments on page 39). 

5.17. Problem (F. D. Tall). Suppose (TAM) holds and let X be a Cech-complete 
first countable space such that c(X) — K0. Is it true then that X is separable? (See 4.3 
and 1.7.) 

5.18. Problem. Is the product of countably many spaces of countable tightness 
again a space of countable tightness? V. Malychin proved that the answer is yes 
if all the factors are bicompact. 
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