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ON TOPOLOGICAL ENTROPY 

B. RIEČAN 

Bratislava 

In this communication we introduce an abstract scheme including the topological 
entropy (see [1]) as well as the Kolmogoroff-Sinaj's entropy (see [2], [3]) and also 
some other invariants. 

Let P be a set with a reflexive and transitive relation ^ . Assume that on the 
set P an associative binary operation v is defined such that A v B ^ A and A v B 2: 
^ B for every A9BeP. Further let T: P -> P and H : P -» <0, oo) be any functions 
satisfying the following conditions: 

k j k 

1. H( V T(A)) ^ H( V T(A)) + H( V T(A)). 
i = 0 f = 0 i=j+l 

2. T(A v B) = T(.4) v T(B). 
3. H(T(,4)) ^ H(A). 

B - l 

Lemma, [/nder t/iese assumptions lim l/n H( V T*(A)) exists for any AeP. 
«=o 

Definition. For any given P, T, if and ,4 e P let us put /i(4, T) = 

= lim 1/H H( V T£(-4)), /i(T) = sup {h(A9 T); .4 e P}; ft(T) is called the entropy 
i = 0 

of the triple (P, T, #). 
Examples. 

1. Topological entropy. Let X be a topological space,/:X -»Jf a conti­
nuous map, P the family of all finite open coverings of X (Rt g R2 iff R2 is a refine­
ment of Rt)9 H(A) = log card A9 T(A) = f~*(A). 

2. Kolmogoroff-Sinaj's entropy. Let (X9 S9 m) be a probability measure 
space, f:X-+X a measure preserving transformation, P the family of all finite 
measurable decompositions A of JSTsuch that A9 f~

x(A)9 ...9f
k(A) are independent 

for all fe, T(A) = f~\A)9 H(A) = -£{m(£) log m(E); EeA}. 

3. Entropy of an automorphism of a Boolean algebra. Let B be a 
Boolean algebra, / an automorphism of B. Let P be the set of all finite decomposi­
tions of the greatest element of B. For A e P put H(A) = log card A9 T(A) ^ f(A). 
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Usually, if "two systems are isomorphic" then their entropies are equal. In 
general, two triples (P, T, H) and (R, S, G) are equivalent, if there is a bijection 
U : P -» R with the following properties: 

1. U(A v B) = U(A) v 17(B). 
2. To U = U o S. 
3. G(U(A)) = H(A). 

Theorem 1. / / (P, T, H) and (R, S, G) are equivalent then their entropies are 
equal. 

We shall illustrate the preceding fact by the following three examples; the first 
two examples are well-known, the third one leads to a new result. 

Let Xn be the set of all sequences x = {**}£= -«> of integers 0 ,1 , . . . , n — 1. 
The shift is the map f:Xn~*Xn defined by the formula /({*„}£--«>) = {yn} *=--«» 
where yu = xw+1 for every n. There are at least three natural structures on Xn: 

1. Topology Tn with the subbase consisting of all cylinders {x;xt = j} and the 
shift / . It was proved in [1] that the topological entropy h(f) = log n. It follows 
that there is no homeomorphism g : Xn -• Xm (n 4= m) commuting with the shifts. 

2. The (Bernoulli) dynamical system (Xn9 Sn9 fjt,f); here Sn is the cr-algebra 
CO 

generated by the cylinders; \i = X A-* is the Cartesian product of probability 
i = — oo 

measures fa; for all i9 fii~ii0
 a n d A*o is defined by means of n-tuple (p0, pl9..., pn-x)9 

i.e., n0(i) = pt, f is the shift. It is well-known that the KolmogorofF-Sinaj's entropy 
h(f) = — XP«-.°gPi- Hence two Bernoulli systems with different entropies cannot 
be isomorphic. (Recently D. Ornstein [4] has proved the converse theorem.) 

3. <x-algebras Sn generated by the cylinders and the automorphism / induced 
by the shift. Problem: Is there an isomorphism g :Sn-+ Sm commuting with the 
shifts? 

Theorem 2. / / Sn is the a-algebra generated by the cylinders, f is the auto­
morphism of Sn generated by the shift and h(f) is the entropy introduced in the 
third example, then h(f) = log n. 

Corollary. Given n 4= m, there is no isomorphism g : Sn-* Sm commuting 
with the shifts. 

The last corollary was proved also in [5], but in another way. 
Of course, also some further theorems can be proved in the general case. So 

ft(T*) = k h(T), h(Tx x T2) = h(Tt) + h(T2) and if A e P is an element such that 
» - i 

{ V T\A)}?-o "generates" the set P, then h(T) = h(T, R). 
i = 0 



B. RIECAN 373 

Finally we list further examples satisfying the assumptions of our scheme: 

4. Another type of topological entropy. Let P be the family of all open 
coverings of X having refinements of finite orders, H(A) = log min {order B; B is 
a refinement of A}. This invariant probably corresponds to the topological dimension. 
If X is a topological space of finite dimension, then dim X £> eHT) — 1. 

5. Group endomorphism entropy (see [1]). Let G be an Abelian group, 
P the family of all finite subgroups, A ^ B iff A c B9 T an endomorphism and 
H(A) = log order A. 

6. Entropy of a measure preserving transformation. Let P be a ring 
of sets (ordered by the inclusion), H a measure on P, Ta measure preserving trans­
formation. 

7. Entropy of an operator. P is the system of all integrable functions (ordered 
as usually), H is the integral, T(f) = / + g where g is a fixed non-positive function. 
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