Beloslav Riečan
On topological entropy

In: Josef Novák (ed.): General Topology and its Relations to Modern Analysis and Algebra,

Persistent URL: http://dml.cz/dmlcz/700781

Terms of use:

© Institute of Mathematics AS CR, 1972

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz
ON TOPOLOGICAL ENTROPY

B. RIEČAN

Bratislava

In this communication we introduce an abstract scheme including the topological entropy (see [1]) as well as the Kolmogoroff-Sinaj's entropy (see [2], [3]) and also some other invariants.

Let \(P \) be a set with a reflexive and transitive relation \(\leq \). Assume that on the set \(P \) an associative binary operation \(\vee \) is defined such that \(A \vee B \geq A \) and \(A \vee B \geq B \) for every \(A, B \in P \). Further let \(T : P \rightarrow P \) and \(H : P \rightarrow (0, \infty) \) be any functions satisfying the following conditions:

1. \(H(\bigvee_{i=0}^{k} T^i(A)) \leq H(\bigvee_{i=0}^{j} T^i(A)) + H(\bigvee_{i=j+1}^{k} T^i(A)) \).
2. \(T(A \vee B) = T(A) \vee T(B) \).
3. \(H(T(A)) \leq H(A) \).

Lemma. Under these assumptions \(\lim n^{-1} \sum_{i=0}^{n-1} H(\bigvee_{i=0}^{n-1} T^i(A)) \) exists for any \(A \in P \).

Definition. For any given \(P, T, H \) and \(A \in P \) let us put \(h(A, T) = \lim n^{-1} \sum_{i=0}^{n-1} H(\bigvee_{i=0}^{n-1} T^i(A)) \), \(h(T) = \sup \{ h(A, T); A \in \bar{P} \} \); \(h(T) \) is called the entropy of the triple \((P, T, H) \).

Examples.

1. **Topological entropy.** Let \(X \) be a topological space, \(f : X \rightarrow X \) a continuous map, \(P \) the family of all finite open coverings of \(X \) (\(R_1 \leq R_2 \) iff \(R_2 \) is a refinement of \(R_1 \)), \(H(A) = \log \text{card } A \), \(T(A) = f^{-1}(A) \).

2. **Kolmogoroff-Sinaj's entropy.** Let \((X, S, m) \) be a probability measure space, \(f : X \rightarrow X \) a measure preserving transformation, \(P \) the family of all finite measurable decompositions \(A \) of \(X \) such that \(A, f^{-1}(A), \ldots, f^{-k}(A) \) are independent for all \(k \), \(T(A) = f^{-1}(A) \), \(H(A) = -\sum m(E) \log m(E); E \in A \).

3. **Entropy of an automorphism of a Boolean algebra.** Let \(B \) be a Boolean algebra, \(f \) an automorphism of \(B \). Let \(P \) be the set of all finite decompositions of the greatest element of \(B \). For \(A \in P \) put \(H(A) = \log \text{card } A \), \(T(A) = f(A) \).
Usually, if "two systems are isomorphic" then their entropies are equal. In general, two triples \((P, T, H)\) and \((R, S, G)\) are equivalent, if there is a bijection \(U : P \rightarrow R\) with the following properties:

1. \(U(A \vee B) = U(A) \vee U(B)\).
2. \(T \circ U = U \circ S\).
3. \(G(U(A)) = H(A)\).

Theorem 1. If \((P, T, H)\) and \((R, S, G)\) are equivalent then their entropies are equal.

We shall illustrate the preceding fact by the following three examples; the first two examples are well-known, the third one leads to a new result.

Let \(X_n\) be the set of all sequences \(x = \{x_i\}_{i=-\infty}^{\infty}\) of integers \(0, 1, \ldots, n - 1\). The shift is the map \(f : X_n \rightarrow X_n\) defined by the formula \(f(\{x_i\}_{i=-\infty}^{\infty}) = \{y_i\}_{i=-\infty}^{\infty}\), where \(y_i = x_{i+1}\) for every \(n\). There are at least three natural structures on \(X_n\):

1. Topology \(T_n\) with the subbase consisting of all cylinders \(\{x; x_i = j\}\) and the shift \(f\). It was proved in [1] that the topological entropy \(h(f) = \log n\). It follows that there is no homeomorphism \(g : X_n \rightarrow X_m (n \neq m)\) commuting with the shifts.

2. The (Bernoulli) dynamical system \((X_n, S_n, \mu, f)\); here \(S_n\) is the \(\sigma\)-algebra generated by the cylinders; \(\mu = \bigotimes_{i=-\infty}^{\infty} \mu_i\) is the Cartesian product of probability measures \(\mu_i\); for all \(i\), \(\mu_i = \mu_0\) and \(\mu_0\) is defined by means of \(n\)-tuple \((p_0, p_1, \ldots, p_{n-1})\), i.e., \(\mu_0(i) = p_i\). \(f\) is the shift. It is well-known that the Kolmogorov-Sinaj's entropy \(h(f) = -\sum p_i \log p_i\). Hence two Bernoulli systems with different entropies cannot be isomorphic. (Recently D. Ornstein [4] has proved the converse theorem.)

3. \(\sigma\)-algebras \(S_n\) generated by the cylinders and the automorphism \(f\) induced by the shift. Problem: Is there an isomorphism \(g : S_n \rightarrow S_m\) commuting with the shifts?

Theorem 2. If \(S_n\) is the \(\sigma\)-algebra generated by the cylinders, \(f\) is the automorphism of \(S_n\) generated by the shift and \(h(f)\) is the entropy introduced in the third example, then \(h(f) = \log n\).

Corollary. Given \(n \neq m\), there is no isomorphism \(g : S_n \rightarrow S_m\) commuting with the shifts.

The last corollary was proved also in [5], but in another way.

Of course, also some further theorems can be proved in the general case. So \(h(T^n) = k h(T)\), \(h(T_1 \times T_2) = h(T_1) + h(T_2)\) and if \(A \in P\) is an element such that \(\bigvee_{i=0}^{n-1} T^i(A)\) "generates" the set \(P\), then \(h(T) = h(T, R)\).
Finally we list further examples satisfying the assumptions of our scheme:

4. Another type of topological entropy. Let P be the family of all open coverings of X having refinements of finite orders, $H(A) = \log \min \{\text{order } B; B \text{ is a refinement of } A\}$. This invariant probably corresponds to the topological dimension. If X is a topological space of finite dimension, then $\dim X \geq e^{H(T)} - 1$.

5. Group endomorphism entropy (see [1]). Let G be an Abelian group, P the family of all finite subgroups, $A \leq B$ iff $A \subset B$, T an endomorphism and $H(A) = \log \text{order } A$.

6. Entropy of a measure preserving transformation. Let P be a ring of sets (ordered by the inclusion), H a measure on P, T a measure preserving transformation.

7. Entropy of an operator. P is the system of all integrable functions (ordered as usually), H is the integral, $T(f) = f + g$ where g is a fixed non-positive function.

References

SLOVAK TECHNICAL UNIVERSITY, BRATISLAVA