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ON MONOTONE DECOMPOSITIONS 
OF SMOOTH CONTINUA 

G. R. GORDH, JR. 

Riverside — Lexington 

The notion of smoothness of fans, dendroids, and hereditarily unicoherent 
continua has been discussed in [1], [4], and [6], respectively. We shall define a class 
of continua, called smooth, which contains the class of smooth hereditarily uni­
coherent continua, and we shall discuss some of the basic properties of such continua. 

A continuum is a compact, connected, metric space. A continuum is said to be 
hereditarily unicoherent at the point p provided that the intersection of any two 
subcontinua, each of which contains p, is connected. Clearly a continuum M is heredi­
tarily unicoherent at p if and only if given any point x in M there exists a unique 
subcontinuum which is irreducible between p and x. If the continuum M is heredi­
tarily unicoherent at p, and q is a point of M, then pq will denote the unique sub-
continuum which is irreducible between p and q. 

A continuum M is said to be smooth at the point p if M is hereditarily uni­
coherent at p, and for each convergent sequence of points an of M the condition 
lim an = a implies that the sequence of continua pan is convergent and Lim pan = pa. 
The set of points at which a continuum M is smooth is called the initial set of M and 
is denoted by l(M). If I(M) =f= 0, then M is said to be smooth. 

Theorem 1. If M is a smooth continuum then (i) M is locally connected at each 
point ofl(M), (ii) M is a dendrite if and only ifl(M) = M, (iii) M is unicoherent, 
and (iv) every indecomposable subcontinuum of M has void interior. 

Theorem 2. If M is a smooth continuum then there exists a decomposition D 
of M (called the canonical decomposition) such that (i) D is upper semicontinuous, 
(ii) the elements of D are continua, (iii) the decomposition space of D is arcmse 
connected, and (iv) if E is a decomposition satisfying (i), (ii), and (iii) then D refines 
E. Moreover, the decomposition space of D is a smooth dendroid and each element 
of D has void interior. 

The decomposition of Theorem 2 is similar to the decomposition obtained 
for A-dendroids in [2]; however, the canonical decomposition of a A-dendroid may 
consist of a single element [3] while the canonical decomposition of a smooth 
continuum is never degenerate. 
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For a detailed discussion of these results including generalizations to compact 
Hausdorff continua, see [5]. 
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