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COMPLEMENTARY INDUCTIVE INVARIANTS 
AND DIMENSION 

J. M. AARTS 

Delft 

All spaces under discussion are assumed to be metrizable. Let 0bca non-empty 
class of spaces which is closed for topological mappings. Then the following topo­
logical invariants can be defined. 

(1) The strong (weak) inductive invariant ^-IndX (^-indjf) induced by the 
class 0 is inductively defined in a similar way as Ind X (ind X), but starting with the 
definition that ^-IndX (=0>-indX) = - 1 iff X e0. 

Of course, inductive dimension (0 = {0}) is the best explored inductive in­
variant. The concept of an inductive invariant has been introduced by Lelek [5]. 

(2) The deficiency of X with respect to 0 is defined as follows: 0-dciX = n 
if there exists ye 0 such that X c Y and dim Y \ X ^ n. 

The case that 0 is the class of all compact spaces was first discussed by de 
Groot [2]. To these invariants we add 

(3) The surplus of X with respect to 0 is defined by ^-sur X _ n if there 
exists Ye 0 such that Y a X and dim X \ Y ^ n. 

0-defX = n, ^-defZ = oo etc. are defined as usual. E.g. {0}-def X = oo, 
whenever X # 0. 

It can be shown quite easily that ^-Ind X ^ ^-sur X for every space X9 if the 
class 0 is closed monotone (i.e. Ze09 whenever Ye 0 and Z is a closed subset of y). 
Furthermore, ̂ -Ind X g 0-de(X for every space X9 if the class 0 is closed monotone 
and open monotone. 

By Jt(a) and s/(a) we denote the class of all sets of absolute multiplicative 
and additive Borel class a respectively. (See [4] for definitions. Recall that s/(0) = 
= {0}, Jf(0) is the class of compact spaces, s/(l) is the class of cr-locally compact 
spaces [7] and J((l) is the class of topologically complete spaces.) 

Theorem 1. Let 0 = s/(a) or 0 = Jt(o) for a = 2. Then ^-IndX <J n if and 
only if there exist Y9Ze0 satisfying Y c= X c Z and dim Z \ Y ^ n.In particular 
^-IndX = ^-defX = ^-surJC for every space X. 

Theorem 2. (See [1].) ^r(l)-Ind X = ^(l)-def X for every space X. 

Theorem 3. s/(l)-lnd X = s/(l)-s\xr X for every space X. 
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Problems. Are the equalities J£(i)-IndX = J((l)-sur X and s/(i)-IndX = 
= sf(l)-def X valid for every space X ? To prove the second equality for separable 
spaces is a problem1) posed by Nagata [6]. As follows from the corollary below these 
equalities are closely related. It is a long unsolved problem whether or not JK(0)-
-ind X = ^(0)-def X for every separable space X ([2], [3]). 

Definition. Let 0>, 21 and 0t be topologically closed classes of spaces. ^ and 2, 
are complementary with respect to St if for every Z e 01 and for all X and Y with 
X u 7 = Z and X n y = 0 the equality ^-Ind X == .2-Ind Y holds. 

Theorem 4. -s/(l) awd *^(1) are complementary with respect to Jf(0). s#(<x) and 
J?(a) are complementary with respect to Jf(l) for a ^ 2. 

Corollary. / / ^(l)-Ind X == -^(l)-sur X for every separable space X, then 
s/(i)-IndX = j^(l)-def X for every separable space X. 

Example. It is known [1] that for the product X of the rationals and the n-dim-
ensional cube /", we have ^(l)-Ind X == n. 

By Theorem 4 it follows that for the product Y of the irrationals and F we have 
jtf(l)-Indy= n. 

The proofs of Theorems 1, 3, and 4 will be published in forthcoming papers. 
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*) Added in proof: This problem has been solved in the negative by J. M. Aarts and T. 
Nishiura. 
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