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ON COMPLETIONS 
OF CONVERGENCE COMMUTATIVE GROUPS 

J. NOVAK 

Praha 

In this paper the notions of Cauchy sequences and completeness for convergence 
commutative groups are introduced. For any such group L a completion Lx is 
constructed containing L as a dense subspace and a subgroup. Finally, examples 
are given which show that L can have more than one completion. 

Let L be a point set, fl a convergence and A a convergence closure for L (kA is 
the set of all lim xne L such that \Jxn <= A). We have a convergence space (L, £, A). 
Instead of lim xn = x we sometimes write ({*„}, x)e fl or £-lim xn = x. Using the 
transfinite induction we define successive closures k^A in the following manner 

k°A = A , kxA = kA, tfA = U kkPA . 

The closure operator kmi is a topology for L. A subset A c Lis A-closed if kA = A. 
A subset B c L is A^-dense in L provided that A^B = L. 

Definition 1. Let (Ll5 £A, Aj) be a convergence space. Define ({*„}, x) e £* 
whenever for each subsequence {*„.} of {x„} there is a subsequence {xn. } of {x„.} 
such that ({xn. }, x)e 2t. We say that £* is a star convergence1) of the convergence fl. 

It is easy to prove that 2t c £*, (£*)* = fl* and A? = kx. 
Let (L, fl, A) be a convergence space and assume that £ is a star convergence. 

Let + be a commutative group operation on L. If lim xn = x and lim yn = y implies 
that lim (xn — yn) = x — y then we have [3] (see also [4]) a convergence commutative 
group (abbr. a cc group). It will be denoted (L, £, A, + ) . 

Definition 2. Let (L, fl, A, + ) be a cc group. The collection of all pairs ({xrt}, {yn})9 

where {x„}, {yn} are sequences of points of L such that lim (x(n — yJn) = 0 for all 
subsequences {fn} and {jn} of {n} will be denoted Q. A sequence {xn} of points of L 
is called a Cauchy sequence (in L) if ({xB}, {x„}) e Q. 

x) P. Urysohn [5] calls 2* the convergence a posteriori. S* is sometimes called the maximal 
or largest convergence [1], [2]. 
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Lemma L If ({x„}, {yn}) e Q then both {xn} and {yn} are Cauchy sequences. 

Lemma 2. Each subsequence of a Cauchy sequence is a Cauchy sequence. 

Lemma 3- If ({xn}, x) e fi then {xn} is a Cauchy sequence. 

Lemma 4- Let {xn} be a sequence and {yn} a Cauchy sequence. Then ({xn}, {yn}) e 
eQ iff lim (x„ - yn) = 0. 

Lemma 5. / / ({x„}, {x^}) e Q and ({yn}9 {y'n}) e Q then ({xn - yn\ {x'n - y'n}) e Q. 

Lemma 6. / / lim xn = x, then lim yn = x iff ({x„}, {yn}) e Q. 

The proofs of Lemmas 1—6 are easy and only hints are given here: 

Lemma 1.0 = lim (x,, - yJn) - lim (xJn - yJn) = lim (x/n - xJn). 
Lemma 2. Evident. 
Lemma 3. lim xin = x = lim xJn implies lim (xln - xJn) = 0. 
Lemma 4. lim (x„ - yJn) - lim (yn - yJn) = lim (x„ - yn). 
Lemma 5. lim (x/n - x'Jn) - lim (yin - y'Jn) = lim ((xin - yin) - (x'Jn - y'Jn)). 
Lemma 6. lim xn = x = lim yn implies 0 = lim (x/n - x) + lim (x - yJn) = 

= lim (xin - yJn). Now, if lim xn = x and ({xw}, {yn}) e Q then 0 = lim (x - xw) + 
+ lim (x„ - yn) = lim (x - yn) = x - lim yn. 

From Definition 2 and from Lemma 1 it easily follows that Q is an equivalence 
relation on the set of all Cauchy sequences. The class of all Cauchy sequences which 
are equivalent to a Cauchy sequence {xw} will be denoted [{*„}]• Evidently, lim xn = x 
iff [{*«}] = [M]> M being the constant sequence. 

Definition 3. A subset A of a cc group (L, £, A, + ) is called complete provided 
that each Cauchy sequence {x„}, xn e A, converges to a point of A. 

Lemma 7. A subset A of a complete cc group (L, fi, A, + ) is complete iff it is 
X-closed. 

The easy proof is omitted. 

Let (Lt9 fit, Xl9 + t ) , iel be cc groups. Denote L = X{-kt; iel} the Cartesian 
product of Lt, £ the coordinatewise convergence on L, X the convergence closure 
for L induced by fi and + the coordinatewise group operation on L. Then fi is a star 
convergence [2] and we have a Cartesian convergence commutative group (L, fi, / , +) . 

Lemma 8. Let (L, fi, X, + ) be a Cartesian cc group defined by cc groups 
(L4, fit, Xr +4), iel. Then {(x*)}^! isa Cauchy sequence in (L, fi, X, + ) iff { x ^ } ^ 
is a Cauchy sequence in (Ll9 fi,, Xt, +t)for each iel. 

The proof is evident. 
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Lemma 9. Let (Ll9 fl„ Xl9 + ,), vel9 be complete cc groups. Let (L, fi, A,+) 
be their Cartesian cc group. Let G be a subgroup of the group (L, +) . Then XaiG 
is the smallest complete convergence group containing G as a subgroup. 

Proof. XmG is the smallest A-closed subgroup of L containing G as a subgroup. 
L is complete by Lemma 8. Hence the assertion instantly follows from Lemma 7. 

Definition 4. Let (L, fi, A, + ) be a cc group. A cc group (Ll9 2l9 Xl9 + ) is called 
a completion of (L, fi, A, + ) if it is complete and such that L is a A®'-dense subspace 
of (Ll9 2l9 At) and a subgroup of (Ll9 +) . 

Theorem 1. Each cc group (L, fi, A, + ) has a least one completion (Ll9 2l9 Xl9 +) . 

The proof of Theorem 1 is divided into two parts A and B. In the first part a cc 
group (Ll9 fi*, Xl9 + ) is constructed such that L is a dense subspace of Lt and 
a subgroup of Lt. In the second part a definition and a lemma are given and it is 
proved that (Ll9 fi*, Xl9 + ) is complete. 

A. Let (L, fi, A, + ) be a cc group. Let X be a point set of power \x\ > 2 , L | 

containing L as a subset. Let g be a one-to-one map on the set of all classes [{xn}] 
of Cauchy sequences into X such that g([{xn}]) is a point x of L iff ({xn}, x) e 2. 
Denote Lx the set of all points #([{xn}]) in X. Then L c Lx aX. Now define a binary 
operation + on Lt: 

Definition 5. Let z = #([{xn}]) and t = #([{)>,.}]) be points of Lt. By Lemma 5, 
{xn + yn} is a Cauchy sequence in L. We put z + t = g([{xn + yn}]). 

In view of Lemma 5 the operation + does not depend on representatives of 
classes. 

If x e L, y e L then x + y = g([{x}]) + flf([{y}]) = flf([{x + y}]) = x + y. 
Consequently, we may write + instead of + on Lt. If {xn} is a Cauchy sequence in L, 
then -0([{xB}]) = 0([{-x-}] ) . 

Statement 1. (Ll9 + ) is a commutative group containing (L, + ) as a subgroup. 

The proof follows instantly from Definition 5. 

Definition 6. Let £ t be the set of all pairs ({?„}, z)9 zn eLl9ze Lt such that there 
is a Cauchy sequence {xro}, xm e L, with the property2) z — zn = 0([{xw}]) — xn. 

2) If {>>„}, yn e L, is another Cauchy sequence then 0([{xn}]) — xn = #([{.yn}]) — >>n iff 
xn — yn is a constant point in L for each n. It follows that ({-?„}» -0 e Si can be defined by more 
than one Cauchy sequence in L. 
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Statement 2. 2t is a convergence on Lt. 

Proof. First prove that ({zn}9 z') e 2l9 ({zn}9 z
n) e 2X implies z' = z". As a matter 

of fact, let {xm} and {ym} be Cauchy sequences in L such that z' — zn = a — x„, 
z" - z„ = b - j;B where a = Sf([{xM}]) and ft = 0([{)>m]}). Denote c = a - b + 
+ (z* - z'). Then y„ = xn - c. It follows ceL and so b = #([{xw - c}]) = a -
- c = b - (z* - z'). Hence z" - z' = 0. 

Evidently ({z}, z) e 2X for each z e Lt and ({z„}, z) e 2t implies that ({zn|}, z) e 
e 2X for each subsequence {«.} of {n}. It follows that 2t is a convergence on Lt. 

Statement 3. ({z„}, z) G flx and ({tn}91) e 2t implies ({zn - tn}9 z - t) e £x. 

Proof. Let z - z„ = a - xn and f - tn = 6 - j/,, where a = #([{*„}]) and 
* - *([{*}])• T h e n * - * - (*. - 0 = * - fc - (*. - JV) = *([{*. - yn}]) -
- (*» - )>,,)• Hence firlim (zn - tn) = (z - f) by Definition 6. 

Let us notice that fij need not be a star convergence on Lx. It is easy to see that 
fit = 2\ iff 2t = fi, i.e., iff (L, fi, A, +) is a complete cc group. 

Statement 4. Let fif &e a star convergence of the convergence 2X. Then 
(Ll9 fi*, Xl9 +) is a cc group. 

Proof. Let ({an}9 a )e£* and ({&„}, fe)efij and let {ant - feB.} be any sub­
sequence of {an — bn}. Then, by Definition 1, there is a subsequence {B|fc}*Li of 
{njjli such that ({^».fc}, a) e fij and ({&W|k}, b) e 2t. Consequently, from Statement 3 
it follows that ({a„ik - bnJ9 a - b)e2v Hence ({an - &„}, a - 6) e fit by De­
finition 1. 

Now, we are going to prove 

Lemma 10. J/ ({xn}9 0) e fi*, xn e L, then ({xn}9 0) e fi. 

Proof. Let {xni} be a subsequence of {xn}. Since fi* is a star convergence, there 
is a subsequence {x»j|e} of {*„.} such that ({*„.}, 0)efii- By Definition 6 there 
is a Cauchy sequence {ym}m=l9 ym e L, in L such that -x - l f c= 0([{ym}]) - JV It fol­
lows that #([{.)>,-,}]) e L and consequently fi-lim (flf([{ym}]) - J>*) = °- Hence 
£-lim (-x„ik) = 0. Since fi = fi* we have fi-lim xn = 0. 

From Lemma 10 immediately follows 

Statement 5. L is a subspace of Lx. 

From Statements 1-5 it follows that (Ll9 fij, Alf +) is a cc group containing 
(L, fi, A. +) as a subgroup and a subspace such that A"L = AXL = L^ 
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B. Definition 7. Points z, t of Lx are called equivalent provided that z — f e L. 
The class of all points of Lx which are equivalent to z will be denoted [z]. 

Lemma 11. If ({zn}9 0) e fij, z„ e L19 then zn e [ z t ] for each natural n. 

Proof. By Definition 6 there is a Cauchy sequence of points x w e l such that 
~z* = #([{xm}]) - *«• Hence z2 - z„ = Xj - xn e L for each n. 

Statement 6. (Ll9 2l9 Xl9 +) is a complete cc group. 

Proof. Let {an} be a Cauchy sequence in Lj. Then, by Definition 2, (ain — aJn, 0) e 
efi*, {/„} and {jn} being any subsequences of {n}. Consider two cases: 

(1) There is a subsequence {bn} of {an} such that i + j implies bt $ [fe;]. Then 
{b„} is one-to-one. Construct a subsequence {bin} of {&„} as follows: Put it = 2. 
Suppose we have just chosen k — 1 naturals im such that 2m""1 < im ^ 2W and that 
no two distinct members of the sequence {bm — bim}n\i\ are equivalent. Consider 
the sequence {bk — &,,}„\L2fc--+i- It contains 2*""1 points bk — &„. Because 2ft~1 > 
> fc — 1 there is a natural ik, 2*""1 < zfc ^ 2* such that the point bk — bik fails to be 
equivalent to any of the points bm — bim (otherwise there would be two indices nl9 

n2, 2k~l < nt < n2 ^ 2k such that bk - bni e [bk - 6„J, i.e., feWl e [feBJ, which 
is impossible). In such a way we have a sequence {bn — bin}nSil no two distinct 
members of which are equivalent. By Lemma 11, no its subsequence fii-converges 
to 0. On the other hand, {bn} is a Cauchy sequence, by Lemma 2. Hence ({bn — bin}9 0) e 
e £*. In view of Definition 1 we have a contradiction. 

It follows that the case (l) cannot occur. 

(2) There exist a point zeL and a subsequence {cn} of {an} such thatcne [z] 
for each n. Hence c„ = z + r„, r„ being suitable points of L. Since {cn} is a Cauchy 
sequence we have ({cin - cjn}, 0)ef i* for any subsequences {iB} and {./„} of{n}. 
Consequently, ({rin - r7n}, 0) e £*. According to Lemma 10 and Definition 2, 
{rB} is a Cauchy sequence in L. Denote c = fif([{^}]). Since c — rn = g([{r„}"\) — rB 

we have ({rn}9 c)eQt c fi*, by Definition 5, and so ({cn}9 c + z)e fi*, by Statement 4. 
Hence fi*-lim a„ = c + z, by Lemma 6. 

3. 

Examples. Let X be a non void point set. Let fi denote the usual set convergence 
on the system X of all subsets of X. Then (X, fi, A, -r) is a complete cc group. As 
a matter of fact, if {An}9 An e X, is a Cauchy sequence then Lim inf An = Lim sup An. 
Otherwise, there would be two subsequences {/„} and {jn} of {n} and a point x e 
e ^4ln -5- 4J n for each n. This is a contradiction. From Lemma 7 it follows that each 
ring of sets R c X considered as a cc group has a completion in X, viz. the sigma 
ring S(R) over R, because X°lR = S(R). 
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Let 3? be the class of all real valued functions on X. Let £' be the convergence 
on $F at each point. From Lemma 9 it follows that (8F9 £ \ X9 +) is a complete cc 
group. Now, if X is the real line Ri9 <& the class of all continuous functions on Rx 

and Si the class of all Baire functions then Amt(% =- Si. Hence Si is a completion of <€9 

by Lemma 7. 
A cc group can have several completions which are not homeomorphic. This 

will be illustrated by following examples. 
Let Rt be the set of all real numbers and .R the set of all rational numbers. 

Let ux and u be the usual topologies for Rx and R. Then the usual topological group 
(R9 % u9 +) of rationals is a cc group. It has two different completions. One of them 
is (Rl9 ul9 +) and the other, by Theorem 1, is the cc group (Rl9 9t*, Xl9 +) of real 
numbers the closure of which differs from the usual closure for reals. From Lemma 11 
we deduce that no subsequence of the sequence {n~Xyf2} 9lJ-converges to 0. Hence 

n n 

Let F be the class of all finite subsets of an infinite set X. Then (F, fl, X9 -$-) 
is a cc group. There are two completions of F, both consisting of all countable subsets 
of X. The convergence of the first completion is the usual set convergence whereas 
the convergence Q* of the other completion from Theorem 1 is different from the 
usual set convergence. Notice that, by Lemma 11, the sequence of disjoint infinite 
sets has no subsequence £j-converging to 0. 

Also the cc group # consisting of all continuous functions/(x), x e Rl9 has two 
different completions, one being the cc group Si of all Baire functions and the other 
is a subgroup of Si with a special convergence fl* at each point defined in Theorem 1 
(Definition 6). 

References 

[1] F. Hausdorff: Gestufte Räume. Fund. Math. 25 (1935), 486-502. 
[2] J. Novák: On convergence spaces and theiг sequential envelopes. Czechoslovak Math. Ј. 15 

(90) (1965), 74-100. 
[3] /. Noüák: On convergence groups. Czechoslovak Math. Ј. 20 (95) (1970), 357—374. 
[4] O. Schreier: L-Gгuppгn. Abhandlungen aus dem math. Seminar, 1926, 15. 
[5] P. Urysohn: Suг les classes (SЄ) de M. Fréchet. Enseignement Math. 25 (1926), 77—83. 

INSTITUTE OF MATHEMATICS OF THE CZECHOSLOVAK ACADEMY OF SCIENCES, 
PRAHA 


		webmaster@dml.cz
	2012-09-21T04:35:01+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




