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ON THE FIXED POINT PROPERTY 
FOR SET-VALUED MAPPINGS 

OF HEREDITARILY DECOMPOSABLE CONTINUA 
J. J. CHARATONIK 

Wroclaw 

Let X and Y be two topological spaces. We say that F : X -> Y is a closed set-
valued mapping from X into Y if F(x) is a non-empty closed subset of Y. A closed 
set-valued mapping F : X -> Y is said to be upper (lower) semi-continuous if 
{xeX : F(x) n A 4= 0} is closed (open) in X whenever A is closed (open) in Y. 
F is said to be continuous if it is both upper and lower semi-continuous. If F(x) 
is connected for each x eX, then JF is called continuum-valued. 

Let £ be a class of closed set-valued mappings of a topological space X into 
itself. We say that X has the fixed point property for (£ (the F.p.p. for (£) if, for each 
F e E , there exists xeX such that xeF(x). 

Three conditions for metric continua X are considered in the paper: 

(I) X has the F.p.p. for upper semi-continuous, continuum-valued mappings; 

(II) X is hereditarily unicoherent; 

(III) X has the F.p.p. for continuous, closed set-valued mappings. 

Main problems: 

P rob lem 1. Characterize all continua X with property (I); 

P rob lem 2. Characterize all continua X with property (III); 

have only some partial solutions. It follows from results of A. D. Wallace ([5], 
Theorem A, p. 757), R. L. Plunkett ([4], Theorems 1 and 2, p. 161 and 162) and 
L. E. Ward, Jr. ([7], Lemma 4, p. 162 and Theorem 3, p. 164) that 

Theorem 1. If a continuum X is locally connected, then 

(I) o (II) o (III). 

L. E. Ward, Jr. proved ([7], Corollary, p. 163, and [6], Theorem 2, p. 926) 
the following 

Theorem 2. / / a continuum X is arcwise connected, then 

(i)~(ii)->(m). 
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The problem if (III) implies (II) for arcwise connected continua X was posed 
for the first time in [7], p. 160. There is a conjecture suggesting that the answer 
is affirmative ([8], p. 92). 

The aim of the paper is to prove 

Theorem 3. If a continuum X is hereditarily decomposable, then 

(i) => (ii) =,(i i i) . 

The proof of the first implication is patterned after Ward's proof of the same 
implication in Theorem 2, using a result of H. C. Miller ([3], Theorem 2.6, p. 187). 
The second implication follows from results of H. Cook ([1], Theorem 1, p. 20), 
S. Mardesi6 and J. Segal ([2], Theorem 1*, p. 148) and P. O. Wheatley ([9], p. 546). 

It is natural to ask if both the inverse implications to those in Theorem 3 hold 
for hereditarily decomposable continua X. I conjecture that the answer is yes. 
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