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REMARKS ON AN ALGEBRAIC STRUCTURE 
FOR A TOPOLOGY 

J. C. ABBOTT 

Annapolis 

The purpose of this paper is to discuss an algebraic structure closely related to 
topology. Thus a topology can be defined in terms of a carrier space, X, and a neigh
borhood mapping, r\, which assigns a neighborhood filter to each point of X. The 
principal interest of the topologist is the space X and the ways in which the topology 
affects the structure of this space. In this paper we shall impose an algebraic structure 
on the topology itself and be more concerned with the algebraic behavior of this 
structure than with the structure of the space itself. We begin with a discussion of 
purely algebraic matters concerned with this algebraic system and later we shall 
discuss its relations with topology. 

1. Implication Algebra. In previous papers we have defined an implication 
algebra as a system, <I, .>, consisting of a carrier set, I, together with a single 
binary operation, ab, a, b el, satisfying: 

PI 
P2 

PЗ 

(a b) a = a ; 
(ab) b = (ba) a ; 
a(bc) = b(ac) . 

PI—P3 imply that the product, aa, is a fixed element of I independent of a. We 
designate it by 1. This element is then simultaneously a left identity and right zero of I, 
i.e., aa = 1, la = a, and a l = 1 Va el. Furthermore, using only PI—P3 we can 
introduce a partial order in I by a S b o ab = I. Under this partial order the 
element a v b = (ab) b is a least upper bound for a and b, and 1 is a greatest 
element of I. Hence, <I, ^ v , 1> is a union semi-lattice. I is not, in general, a lattice, 
since not every pair of elements determine a greatest lower bound within I. However 
if a and b have any lower bound, p, then the element a A b = \_a(bp)] pis a greatest 
lower bound for a and b. Next, we call the set of left multiples of a given element, a, 
the principal left ideal generated by a and designate it by [a]. However PI— P3 
imply that b = xa o a ^ b, so that this concept is identical with that of the principal 
filter generated by a in <I, ^ >. Since every principal ideal is bounded below, it follows 
that it is a lattice. In fact this lattice is both distributive and complemented, i.e., 
a boolean algebra. Thus if p is fixed and a e \_p], then ap is a complement of a relative 
to p and 1, i.e., a v ap = 1 and a A ap = p. Hence, every implication algebra is 
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a union semi-lattice in which every principal ideal is a boolean algebra. The converse 
is also true, so that we have a purely lattice theoretic characterization of implication 
algebra. In fact, if <J, v> is a union semi-lattice in which every principal ideal is 
boolean, then the definition ab = (a v b)'h where x'h denotes the complement of x 
within [&], converts <J, v> into an implication algebra. As a corollary we can give 
a purely implication characterization of boolean algebra as an implication algebra 
satisfying: 

P4: 30 G J such that 0a = 1 V a e J . 

In this case <J, ., 0> is equal to the principle ideal generated by 0 which is therefore 
boolean. Hence, a boolean algebra can be defined as a set, J, with a single binary 
operation and a single distinguished element (nullary operation) satisfying PI— P4. 
Finally, we call J complete, if it is complete as a union semi-lattice. 

Many of the most common examples of implication algebras come from set 
theory and topology. Thus if X is any set, then its power set. ^(K) , is a boolean 
algebra and therefore an implication algebra. Hence, any sub-implication algebra, 
i.e., subset closed under set implication AB = A -> B = A' u B where ' denotes 
complement within K, is also an implication algebra. Moreover, the dual set opera
tion, AB = B - A = A! r\B also satisfies PI - P 3 within 0>{X\ so that 3P(X) is also 
an implication algebra under subtraction. We call <^(X), ->> an implication algebra 
and <^(K), — > a subtraction algebra. We then use the term "semi-boolean algebra" 
to designate either an implication algebra or a subtraction algebra. The only distinc
tion between an implication algebra and a subtraction algebra lies in the definition of 
the partial order, i.e., in an implication algebra we write a _" b o ab = 1 whereas in 
a subtraction algebra a _• b o ab = 0, i.e., the two partial orders are converse to 
each other. Hence, as abstract algebras they are identical. Returning now to ^(X), 
the set of all non-empty subsets of X is also an implication algebra which we designate 
by 0>~{X). Since it does not have a least element, it is clearly not boolean (for X = 2). 
Dually the set of proper subsets of X is a subtraction algebra. More generally, if a is 
the cardinality of X and /? = a, then the set of subsets with cardinality ^/J (>/?) is 
an implication algebra while the set of subsets with cardinality ^ jS (< /?) is a sub
traction algebra. In particular, the set of subsets with finite complement is an 
implication algebra while the set of finite subsets is a subtraction algebra. Also the 
set of infinite subsets of any infinite set is a non-boolean implication algebra. Finally, 
if A is a fixed set, then the set of supersets of A (or proper supersets) is an implication 
algebra. 

If now <K, X} is a topological space with topology % then the prime example of 
an implication algebra connected with <K, X> is the set, 9t, of all neighborhoods 
within X, where N is a neighborhood, if it has a non-empty interior. For if A and B 
have non-empty interiors, then clearly A' v B does. Again 9t is not boolean, since 
the empty set is not a neighborhood. 

We next investigate the theory of ideals, homomorphisms, and congruence 
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relations on an abstract implication algebra. First, a subset, H =f= J of an implication 
algebra, I, is called an implication ideal if it satisfies: (i) a e H => xa e H Vx e I and 
(ii) a, b e H and ~aAb=>aAbeH. This is equivalent to the usual definition of 
a dual ideal in a lattice, except that the existence of the meet, a A b, must be 
postulated. An implication homomorphism is next defined in the usual way as 
a mapping on I onto an implication algebra, I, which preserves implication. Its 
kernel is the set of inverse images of the unit, T, of J. A congruence relation, =, is an 
equivalence relation which has the left and right substitution properties with respect 
to implication. Every congruence relation determines a quotient algebra, /, of cosets 
and the natural mapping, a -> a = {x | x = a}, is a homomorphism with kernel L 
Finally, every ideal, H, determines a congruence relation given by a = b mod H o 
o ab, ba e H. The cycle is now completed by showing that if 0 is a homomorphism 
from J onto I with kernel K, then I mod K is isomorphic to I. In the case I is a lattice, 
i.e., closed under meet, then the definition of congruence relation given here reduces 
to the usual lattice theoretic definition, a = b mod H o~h e H such that a A h = 
= b A h. 

We can now consider the structure of the family, */(/), of all ideals of an arbitrary 
implication algebra I. This family is clearly a complete lattice under set inclusion with 
least and greatest elements, the ideals $ = [1] and J itself. The meet of two ideals, 
H and K, is their point set intersection, but their union is the smallest ideal containing 
them. We designate it by H U K or LIHa for arbitrary unions. The set, 0>, of principal 
ideals is dually isomorphic to I itself, so that this suggests defining an implication 
product for ideals corresponding to the product of two elements. Such a product can 
be generalized to arbitrary ideals and leads to the definition: if H and K are two 
ideals of an implication algebra, I, then the set HK = {k e K \ hk = k Vh e H] is 
called their implication product. This definition is equivalent to HK = {k e K \ h v 
v k = 1 Vh e H). If we consider the special case where K = I, then the ideal H* = 
= HI is characterized as the maximal ideal satisfying H n X = <f>, i.e., H* is a lower 
pseudo-complement of H within J. Hence, J is a lower pseudo-complemented lattice. 
More generally HK = HI n K and the operation HK satisfies PI, P3, and P4 for an 
implication algebra, but P2 is replaced by the inequality: P2a: H n K ~l (HK)K 
(we use H n K instead of H LI K because of the duality of the isomorphism between J 
and 0). Within J, HK can be characterized somewhat similarly to the characteriza
tion of implication in terms of union and complement in an implication algebra, i.e., 
HK = (H n K)*K where X*K denotes the lower pseudo-complement of the ideal X 
within the principal ideal in J generated by K. Thus corresponding to the characteriza
tion of implication algebra in terms of union semi-lattices, we can characterize J 
as the dual of a distributive lattice in which every principal ideal is upper pseudo-
complemented. 

Although I is not a boolean algebra, it does contain two special subsets which 
are boolean algebras. First, the operation, H -» H~ = H%* is a closure operation 
and an ideal is called closed if H = H~~. The class of all closed ideals, 2F, is then 
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a sub-implication algebra of «/ which is itself boolean (although not a sub-boolean 
algebra). Next, we call an ideal complemented if it satisfies HU HI = I, i.e., if H* 
is a true complement. Again, if # is the class of complemented ideals, then # is 
also a boolean algebra. In general we have 3P ^ <g cz J* cz , / . We mention one final 
result which is useful in developing a Zassenhaus lemma and Jordan-Holder theorem 
for implication algebra. Namely, if H is a complemented ideal, then I mod H is 
isomorphic to HI and conversely, I mod HI ^ H. 

2. Neighborhoods Algebras. We can now indicate some of the interrelations 
between implication algebra and topology. First of all topology serves as a rich 
source of examples for results and counterexamples in implication algebra. Thus if x 
is a point of a topological space <X, £>, then the set, 91^, of all neighborhoods of x 
is a filter (i.e., ideal) in the implication algebra, 91, of all neighborhoods of X. Hence, 
a topology determines a mapping, rj, defined on points of X into the family of ideals 
of 91. This mapping can be extended to all of &(X) by definining rj(A) = yiA to be 
set of all neighborhoods of A where A is any subset of X. Thus IV is a neighborhood 
of A o 3G e X such that A ^ G ^ N. Conversely, every topology on X arises from 
such a neighborhood map as is conventional in modern approaches to topology. If 
we impose an additional compatibility condition on rj, so that the union of open sets 
will remain open, then we can consider rj to be defined on 2P(X). The role of the 
space X itself then becomes somewhat subordinated and we can generalize many 
topological concepts to implication algebras with suitable neighborhood maps. 
Thus if I is a union complete implication algebra then we call a mapping rj : a -> rj(a) 
from J into the algebras of ideals of/ a neighborhood map, if it satisfies: 

(i) x e rj(a) o 3g such that rj(g) = [g] and a ^ g = x; 
(ii) rj(ga) = [ g j => f)rj(ga) c ^(Vga); 

(hi) if OeJ, then rj(0) = I. 

We call g rj-open if ?/(a) = [a] and the system <J, rj} a neighborhood algebra. 
It follows from (i) that ?/ is antitone, i.e., a = b => r1(b) <= ;?(a). Hence also 

*7(a) £ [a] and ^(l) = [1]. We can show that the set of open sets forms a topology 
in the usual sense. 

The set X = {g | rj(g) = [g]} of open elements of I is closed under finite meet 
and arbitrary unions. This statement can be proved as follows: 

(i) Let gug2eX and let 3gt A g2 in I. Then gt A g2 <; gl9 g2 => *?(gi), 
rj(g2) c ^(flfl A g2), whence ^(g1)Ur/(g2) = [g i ]U[g 2 ] = [gt A g2] £ fl(gi A 
A g2). But j?(gt A g2) c [gt A g2], so that the equality, rj(gt A g2) = [gt A g2] follows. 

(ii) Let rj(ga) = [ga]. Then ga = Vga =>J?(Vff«) £ ^ « ) V a a n d h e n c e f(V0«) £ 

cz H^(ga)- B u t t h e reverse inequality follows from (ii) in the definition. Hence *l(Vga) = 

= fWga) = H[ga] = [Vga]- Hence Vga is open. 
The condition (ii) is stated as an inequality for open elements. In fact, we can 

show that it is an equality for arbitrary elements, i.e., rjfya^ = rw(a*)' ^ o r 

xef)rj(aa) => x e rj(aa) Va. By (i) 3ga open such that aa^ gaS x. Hence \/aa ^ V#« = 
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^ x, where Vga is open. Therefore x e r/(V^«) whence (!*?(#«) -= ^(Va«) a n d the 
reverse inequality follows form the antitone law. 

As an example, if X is any set then we can take I = S?(X). The discrete topology 
is then defined by the neighborhood map r](x) = [{x}] for x eX and rj(A) = [AT] 
for any subset. On the other hand the trivial topology is given by t](A) = [1] for 
A 4= 0 and r/(0) = F On the other hand if H is a fixed ideal in 3P(X)9 then (̂AL) = 
= II n [4] is a neighborhood map. A set is then open if and only if it belongs to H. 
For example, if X is an infinite set of cardinality a and K0 ^ /? g a, then we can take 
as H the class of subsets of X whose complements have cardinality </?. Iff? = K0 

we obtain the usual finite complement topology. On the other hand if A is a fixed set, 
then we can take H = \_A~]9 the principal ideal generated by A. Open sets are sets 
which contain A. This topology fails to separate points within A but separates points 
outside of A. Again, if <X, X} is a topological space with closure operation A9 then 
we can define a neighborhood map by rj(A) = {N .= X | 3G eX and A £ G £ JV}. 
The fl-open sets are then the closed-open sets of (X9 X}. 

Since H = r/(x) is an ideal in I = SP{X)9 we can examine the quotient algebra, 
1 = 1 mod H. Thus, if A and J5 are two subsets of X, then A = B mod H <=> 3 
a neighborhood, JV,, of x such that A nNx = B n JVX. But Nxe H implies 3 an open 
neighborhood, Gx such that A n Gx ~ B n Gx. We therefore say that A and £ 
behave alike locally. The quotient structure therefore describes the local behavior 
of X at the point x. This example also serves to illustrate various aspects of the theory 
of implication algebras. For example, since union is defined in terms of implication, 
every implication homomorphism preserves finite unions. On the other hand they 
do not necessarily preserve arbitrary unions. Thus, for example, let <Z, X} be a, 
say, metric space with metric d. Then if H is again the neighborhood filter of a point a9 

we can let 9 be the natural homomorphism from J = 2P(X) onto / mod H. Let An = 
= {x eX | d(x9 a) > l/n}. Then 9 maps An onto the fixed coset A = {Y <= 
c X | d(Y9 a) # 0}. Hence \JAn = A. On_the other hand \JAn = {x}' where ' 
denotes ordinary set complement. Thus (JAn =f= \JAn. 

As final example, we use I and H as described here to illustrate the product of 
ideals and pseudo-complements. Thus HI = [Y ^ X | Y u Nx = X VNX e H}. But 
Yu Nx = X o Nx c Y Hence, either Y= X or Y= {*}', i.e., HI = H* contains 
exactly two elements and is an atom in J'. The closure H~ = (Hi) I is then {Z | 
ZuY = X VYeHI}. Hence, H~ = [{*}] is the principal filter generated by singleton 
{x}. Thus, in this case, (Hi) I a H. H is therefore neither a closed nor a complement
ed ideal and / mod H £ HI. Similarly, (HK) K =# H n K and P2 fails in L 

Various topological concepts can now be introduced into neighborhood algebras 
without direct reference to an underlying space X. For example the concept of a filter 
basis, an ultra filter, continuous mapping, homeomorphism, etc. can be defined. 
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