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ON SEPARATION AND APPROXIMATION OF REAL 
FUNCTIONS DEFINED ON A CHOQUET SIMPLEX 

D. A. EDWARDS 

Oxford 

1. Introduction 

Two important theorems concerning the space C(X) of all real-valued continuous 
functions on a compact Hausdorff space X are (i) the Weierstrass-Stone theorem 
about linear sublattices of C(K), (ii) the separation theorem of Katetov that, whenever 
—/, g are lower semicontinuous functions from X into (—00, 00] such t h a t / ^ g, 
one can find a function h e C(X) such tha t / ^ h ^ g. The main object of the present 
paper is to describe generalizations of these two theorems to the space of affine 
continuous functions on a Choquet simplex. In the case of Katetov's theorem we 
do slightly more than this, and describe en passant generalizations of Mokobodzki's 
two separation theorems [13] for convex functions. 

A fuller account, with proofs, of the new separation theorems can be found 
in [7] and [8]; the same methods have since been shown, by Boboc and Cornea [4], 
to be applicable in a still more general context, important for potential theory. The 
extension to Choquet simplexes of the Weierstrass-Stone theorem is due to G. 
Vincent-Smith and the author [10]. 

2. Preliminaries 

Let X be a compact Hausdorff space and let C(X) be the Banach space of all real 
continuous functions on X. We shall denote by M(X), M+(X)9 and P(X) respectively 
the Radon, the positive Radon, and the probability Radon measures on X. Iff : X -> 
-> (— oo, 00] is a Borel measurable function bounded below and ju e M+(X), we shall 
denote by /i(f) the extended real number J*/dkI; fi(—f) will then mean — fi(f). We 
recall that M(X) is the Banach dual of C(X) for the pairing (L/, h) -> 11(h) and that 
P(X) is a vaguely (i.e. weak*) compact subset of M(X). 

We consider a wedge *W in C(X) that contains the constant functions. For 
simplicity's sake we also suppose that iV separates the points of X. To each point 
x e X we assign the set of measures 

Rx = RX(W) = {n eM+(X) : n(f) ^ f(x), Mfeif}. 



D. A. EDWARDS 123 

By a #"-eoncave function we shall mean any semibounded Borel measurable 
extended-real-valued function / on X such that ji(f) ^ f(x) whenever x e X and 
\i e Rx. #"-convex functions are defined analogously. We shall always assume that iV 
is minimum-stable (min-stable) in the sense that 

min (/, g) e #" whenever / , g e if . 

Our first three objectives will be to characterize the continuous, the lower 
semicontinuous, and the upper semicontinuous #"-concave functions. 

The following construction will be used. For each upper semicontinuous 
function / : X -> [— oo, oo) and point x e X write 

f(x) = M{g(x):geirjSg}, 

so t h a t / : X -> [— oo, oo) is upper semicontinuous and 

f(x)Sf(x)^m^xf(y). 
yeX 

For fixed .x the restriction to C(X) of the m a p / -* f(x) is real-valued and sublinear 
By a standard Hahn-Banach argument one now has the following result. 

Proposition 1. For each function f e C(X) and point x e X, 

f(x) = max {fi(f) : fieRx} . 

One can now deduce immediately two characterizations of the ^-concave 
continuous functions: 

Corollary. For each f e C(X) the following assertions are equivalent: 

(i)feW; 
(ii) / is 'W-concave; 

(iii)f = f 

This is in fact a trivial extension of Satz 7 of [2]. 
By a #"-affine function will be meant one that is #^-concave and also ^-convex. 

The #~-affine continuous functions are evidently just those in si = iV* n ( — if). 
A function defined merely on a non-empty closed subset E of X is called, by 

a convenient abuse of language, #~-concave (#"-convex etc.) if it is #"£-concave 
(l*F£-convex etc.) with respect to the set of restrictions 

irE = {f\E:feW}. 

Thus to say that a function g on £ is #"-concave means that g is a semibounded 
extended real-valued Borel measurable function such that Lt(g) ^ g(x) whenever 
xe E and t£ e Rx(i^) with supp ju (the support of JJ) a subset of £ (so that fi(g) has 
a clear meaning). 
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A ^-stable set is, by definition, a non-empty closed subset E of X such that for 
each x e E and fx e Rx(if) we have supp /i _ £. The following construction is 
useful. Suppose that £ is a #~-stable set and that 

/ : X -» ( — oo, oo] , g : E -» (— oo, oo] 

are lower semicontinuous and ^-concave, and that g = / j E. Define fi:X-^ 
-> ( — 00, oo] by 

/ i ( x ) Í Ф ) ( **£ , , 
У l V ' \f(x) (xeX ч -0 

Then/i is lower semicontinuous and #"-concave. 
Finally, we recall that the Choquet boundary dwX of X relative to if is defined 

as the set of all one-point if-stable subsets of X (see [1, 2]). 

3. Semicontinuous ̂ -concave functions 

The following theorem extends and also sharpens a theorem of Mokobodski [13] 
concerning ordinary concave functions on a compact convex subset of a Hausdorff 
locally convex space. 

Theorem 1. Let f : X -> (— oo, oo] be a lower semicontinuous if-concave 
function and let u e C(X) be such that u ^ /. Then there exists a if-concave 
function v e C(X) such that u ^ v :g /. 

The proof when u < / i s very simple. Proposition 1, with a little measure theory, 
implies here that u(x) < f(x) for all xeX. The min-stability of if now implies, by 
a trivial covering argument, that there is a v in if such that u < v < /. 

For the case u ^ / a well known approximation technique is used. Defining 
M0 = M — 1 and f0 — f + 1 one finds, by the preceding remarks, a v0 e if such 
that u0 < v0 < f0. Proceeding inductively one obtains sequences {un} etc., with 
un e C(X), fn lower semicontinuous #"-concave, vn e if, and un < vn < fn, by the 
equations 

1 1 
un+1 = max u — , vn  

И + 1 ' 
2 

f n + L = min[7+ — - , vn + 

together with the proof for the case u < /. One now has 

M - ^ T T < 1 ? » ^ < / + ^ T T 
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and 

ii ii 1 
\\Vn+i "" Vn\\ < • 
II n + 1 "II 2« + 1 

Consequently v = lim vn exists and has the desired properties. 
n-*oo 

We have immediately the 

Corollary 1. Let f : X -> (— oo, oo] be a lower semicontinuous function. Then f 
is iV-concave if and only iff is the pointwise limit of an increasing filtering family 
of elements of iV. 

For the case of ordinary concave functions on a compact convex subset of 
a Hausdorff locally convex space this corollary is a result of Mokobodzki [13]. 

Corollary 2. Let E be a iV-stable subset of X and let K #= 0 be a compact 

subset ofX disjoint from E. Then there exists a v eif such that 0 = v = 1, v(x) = 0 

for all x e E, and v(x) = 1 for all x e K. If E is also a Gd then we can choose w e iV 

such that 0 ^ w ^ 1, w(x) = Ofor all x e E, and w(x) > 0 for all xeX \ E. 

This result appears to yield new information even in the classical Krein-Milman 
context. In some respects Corollary 2 can be sharpened in special cases: (a) sup-norm 
algebras (not dealt with here), (b) Choquet simplexes, and spaces satisfying the 
condition (S) (see below). 

Closely related to Theorem 1 is the following mild generalization of a result of 
Choquet (see appendix B 14 of [6]). 

Theorem 2. In the relative topology the Choquet boundary dwX of X is a Baire 
space. 

For the proof, see [9]. 

Much less useful than Theorem 1 is 

Theorem 3. A function f: X -> [— oo, oo) is upper semicontinuous and 
iV-concave if and only if it is the pointwise infimum of a non-empty family of 
elements of #". 

Like Theorem 1, this was suggested by a result of Mokobodzki [13]. 

4. A separation property 

In this section we suppose that iT satisfies the separation condition 
(S): whenever —f, g e #" with f < g we can find a iT-affine continuous function h 

such that f < h < g. 
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It is easy to show that this condition is realized for the wedge of all continuous 
concave functions on a Choquet simplex (see [7, 8]). It is also realized by certain 
wedges of superharmonic functions (see [3, 4, 8]). 

The approximation technique used above to prove Theorem 1, suitably applied 
to the present context, yields 

Theorem 4. Suppose that iV has property (S) and that — / , g : X -> (— oo, oo] 
are iT-concave lower semicontinuous functions such that f ^ g. Then there exists 
a function hestf such that f ^ h ^ g. 

Corollary 1. Let #" , / , g be as in theorem 4. Let E be a Unstable subset of X 
and let h : E -> R be iT-affine, continuous and such that 

f\E^h Sg\E. 

Then there is a function h in s$ that extends h and satisfies 

f ^ h ^ g . 

This corollary has many applications. In the definitive paper [11] of Effros on 
the facial structure of simplexes a special case of this corollary (Effros' theorem 2.4) 
plays a decisive part. 

Theorem 4 was first proved in [7] (but compare [3]) for the special case of the 
ordinary concave functions on a Choquet simplex; in that situation the conclusion 
of Theorem 4 was shown there to characterize Choquet simplexes among the compact 
convex sets. 

The following result is a special case of a theorem of E. B. Davies [5]. 

Proposition 2. Let Q be a (closed) face of a Choquet simplex X and let K =t= 0 
be a compact subset of X disjoint from Q. Then there is a nonnegative continuous 
real affine function h on X that vanishes identically on Q and is >0 on K. If Q is 
also a Gd set then there is a continuous affine function h on X that vanishes on Q 
and is >0 on X \ Q. 

A different proof, based on the work of Effros, was discovered independently 
by Lazar. 

5. A Weierstrass-Stone theorem for simplexes 

The result to be described here is a joint work with G. Vincent-Smith; a fuller 
account, with proofs, will appear in [10]. 

We consider a Choquet simplex X, and denote by Xe the set of all extreme points 
of X. By J^(X) we understand the linear space of all real continuous affine functions 
on X. We consider a linear subspace L of stf(X) that has the Riesz decomposition 
property: i.e. whenever uL, u2, vt, v2 e L with 

max (ut, u2) rg min (vt, v2) 
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we can find a function w e L such that 

max (ut, u2) S w ^ min (v1? v2). 

It is a result of Lindenstrauss [12] that si (X) itself has this property (see [7] for 
a simpler proof). It is easy to see that if L has the Riesz property and contains the 
constant functions, then the closure of L in C(X) has the property. Accordingly we 
take Lto be already closed. By a result of Riesz the Banach dual L* of Lis a vector 
lattice whose positive cone has as base the set 

Y= {FeL* :F = 0, ||F|| = 1} . 

This set Yis convex and compact for the topology a(L*, L), and is in fact a Choquet 
simplex. The pairing between Land L* induces an identification of Lwith si(Y). The 
injection L -» si(X) has a dual si(X)* -» L* which induces a o(L*, L)-continuous 
map n : X -» Ysuch that n(X) = Y 

To simplify the discussion we suppose now that L separates the points of Xe; the 
general case will be discussed in [10], 

Proposition 3. The following properties are equivalent: 

(i) n(Xe) <= Ye; 
(ii) if u eXe, v eX, u + v then n(u) + n(v) (or, equivalently, for some g e L 

we have g(u) # g(v)); 
(iii) if x eXe and f e Lwith f(x) = 0 then there is a geL such that g _• 

^ max (/, 0) and g(x) = 0. 

This proposition is proved by a simple discussion of extreme points together with an 
application of Theorem 4. Property (i) is sometimes stated by saying that n is pure-
state-preserving. 

Theorem 5. ("Weierstrass-Stone"). Suppose that X is a Choquet simplex and 
that Lis a closed linear subspace of si(X) that has the Riesz decomposition property, 
contains the constant functions, separates the points of Xe and satisfies the condi
tions of Proposition 3. Then L = si(X). 

The conditions that L separates the points of Xe and contains the constant 
functions can both be relaxed, but these questions will not be considered here (see 
[10]). 

The proof of Theorem 5 depends upon showing that, whenever / e si(X), the set 
of functions 

{g e L : g < / } 

is an increasing filtering family. This is proved by methods from Choquet boundary 
theory. Once this has been done the desired result follows by use of Dini's theorem 
and Bauer's minimum theorem. 
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