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TOPOLOGIES COMPATIBLE WITH ORDERING 

M. SEKANINA 

Brno 

The partially ordered sets have many times been an object of research of topologists. 
The interval topology on certain linearly ordered sets yields important examples of 
topological spaces. Many topologies for partially ordered sets have been defined — 
especially for lattices — (Birkhoff, Frink, Naito, Rennie). On the contrary, the con
cept of continuity of a relation has been far less developed than the concept of the 
continuity of algebraic operations. As far as I know, a general concept of the compati
bility of a topology with an order has been dealt with, mainly in the papers [1], [2], 
M ' M - I11 M w e dealt with two concepts of the compatibility of a topology and 
a partial order which are generalizations of the concept of Eilenberg. Now, I shall deal 
with one of them. 

Definition 1. Let A be a partially ordered set and u a topology on A. We say 
that u is compatible with the ordering of A, if u is a Tropology and if for every 
pair a, b, a e A, b e A, a < b, there exist a neighbourhood Ol of a point a and a 
neighbourhood 02 of a point b so that 

x e O! => x < b or x || b , 

y e O2 => y > a or y || a 

hold. 

In the sequel K(A) means the set of all topologies on A satisfying KuratowskFs 
axioms. If (A, n) is a partially ordered set (partial ordering is denoted by n), S(A, n) 
means the set of all topologies u on A compatible with n. 

First of all there hold the following theorems (for proofs see [4]). 

Theorem 1. Order-, interval- and ideal- (see [5]) topology are compatible with 
the given ordering. 

Theorem 2. Let (A, u) be a topological lattice, u be a Tt-topology. Then u is 
compatible with the lattice order of the set A. 

From these theorems one can see that the most important cases of topologies on 
partially ordered sets are covered by the concept of compatibility. 

Now we shall turn to the study of 5(^4, n). 
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Theorem 3. u e S(A, n), v finer than u =-> v e S(A, n). 

Theorem 4. A discrete topology on A is compatible with every order on A. 

Proofs are evident. 

Definition 2. Let (A, n) be a partially ordered set. We say that (A, n) is topologi-
cally discrete if S(A, n) consists only of the discrete topology. We say that (A, n) is 
topologically trivial if S(A, n) = K(A). 

Theorem 5. A set (A, n) is topologically trivial exactly when for x < y Zt = 
= {z : z = y], Z2 = {z : z ^ x} are finite sets. 

Proof. The coarsest topology w of K(A) has as open sets 0 and the sets X, for 
which A — X is finite. Let for a certain pair x, y ZL, for example, be infinite. Then, 
every neighbourhood O of the point x intersects Zt. So w $ S(A, n). 

The contrary is evident. 

Corollary of the Theorem 5. Let (A, n) be an infinite distributive lattice, Then 
(A, n) is not topologically trivial. 

Proof. If A has an infinite chain as its subset, the assertion is clear. 
Now, let us admit that only finite chains are subsets of A. Then (A, n) possesses 

the greatest element 1 and the least element 0. As the Jordan-Dedekind condition 
for A is valid, all maximal chains among 0, 1 have n elements for a certain w. It is 
quite clear that n ^ 3 implies A is finite. Let us admit that n < N implies A finite. 
Let 0, a2,..., atf-i> 1 be one of the maximal chains. Then the interval [0, a^-i] 1s 
finite and A — [0, ajy-i] is infinite. There exist two different elements b, c such 
that b, ceA — [0, a^-J, b v a#-i = c v aN„x = 1 and b A ajy-i = c A aN_u 

which contradicts the distributivity of A. 
The following theorem may be of some interest. 

Theorem 6. Let (A, n) be a topologically trivial lattice. Then the interval 
topology on (A, n) is the coarsest topology. 

Proof. Let [a) (= {x : x = a}) be an infinite set for a given a eA. By Theorem 5 
(a] = {x : x = a} = {a}. If b e A — [a), then b \\ a and b A a < a which is 
impossible. So [a) = A. Similarly for the sets of the form (a]. The sets of the form 
(a], [a) form a subbasis of the closed sets of interval topology. As all of them are 
finite or equal to A, interval topology is the coarsest topology. 

Now we shall find a condition for (̂ 4, n) to be topologically discrete. We shall 
start with the following assertion. 

Theorem 7. Let (A, n) be a partially ordered set. Then the interval topology is 
the greatest element ofS(A, n) exactly when the following condition (P) is satisfied: 
for every two elements a, b a \\ b there exist a system au ..., an > a and a system 

n m 

a\,..., am < a so that [b) — U \_ai) an& {b] — \j (a'J are finite. 
»= i ; = i 
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For proof see [4], 

Corollary of the Theorem 1. (A, n) is topologically discrete exactly when the 
interval topology on A is discrete and (P) holds. 

Proof is evident. 

Remark. There exist partially ordered sets (A, n) even distributive lattices (see 
figure 1), in which the interval topology is discrete and (P) does not hold. 

Fig. 1. 

For the lattices we get from Theorem 7 the following 

Theorem 8. Interval topology on a lattice (A, n) is the greatest element of 
S(A, n) exactly when for a || b, [b) — [a v b) and (a] — (a A b] are finite sets. 

Hence we get 

Corollary of the Theorem 8. In distributive lattice (A, n) with the least 
element (the greatest element) and with infinitely many (dual) atoms interval 
topology is not the greatest element in S(A, n). 

Proof. Let a be the least element and ai9i e J the atoms in (A, n). Let atl and ah 

be two different atoms and j el, j =J= il9 j =)= i2. Then a,, v ahe [ai2) and a; v 
v ai2 non e [afl v ah). Simultaneously a,- v ai2 4= ar v ah for j #= / . Hence 
[ai2) - [ax-. v ai2) is infinite. 

The dual assertion can be proved in a similar way. 
Some results on the existence of the greatest element or maximal ones in S(A, n) 

for a given (A, n) can be found in [4]. The general solutions of the related problems 
are unknown. The questions concerning the existence of a topology with prescribed 
properties in S(A, n) are mostly open, too. 

We shall conclude giving a necessary condition for the existence of a compact 
topology in S(A, n)for a lattice (Ai, it). 

Theorem 9. Let there exist in S(A, it) for a lattice (A, n) a compact topology u. 
Then (A, n) has the greatest and least elements. 
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Proof. Admit that A has not the greatest element. For each element a e A an 
open set Oa exists in u such that {a] - {a} a Oa a A - \a) (from the definition of 
compatibility). For every a one such Oa will be chosen. It follows from our assumption 
that the system {Oa : a e A} so constructed is an open covering of A in u. There exists 
a finite subcovering O a i , . . . , Oan. Then we have ax v ... v an non e O f l i u . . . u Oan 

which is impossible. 
Similarly for the least element. 
From the Theorem 5 and the example on fig. 2 it 

follows that Theorem 9 is not valid for the partially ordered 
sets in general. Further, let A be the lattice on fig. 3. 
Define a topology u on A by means of the following 
subbasis of open sets S = {{ak}, {b,}, {c} u {ak, ak+i, ..., 
..., fej-i, bj} : k, I positive integer}, u is compact and 
compatible with the order and A is not complete. 

Fig. 2. Fig. 3. 
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