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ON THE HAHN-MAZURKIEWICZ PROBLEM 
IN NON-METRIC SPACES 

s. MARDESIC 

Zagreb 

Around 1914 H. Hahn [6] and S. Mazurkiewicz [22] independently characterized 
Peano continua, i.e. (Hausdorff) spaces X which are obtainable as images of the real 
line segment J = [0, 1] under (continuous) maps f: I -+ X onto X. They proved 
that Peano continua coincide with metrizable locally connected continua. 

It is natural to ask for a non-metric analogue of this theorem. However, such 
a result has not yet been obtained. It is to this open problem that we refer as to the 
Hahn-Mazurkiewicz problem. Recently the interest in this and related problems has 
been revived and it is the aim of this note to report on the progress made. 

As the non-metric analogue of the arc J we consider here a (totally or linearly) 
ordered continuum C, also called a generalized arc. More generally, an ordered 
compactum K is a compact space whose topology can be derived from a total order < 
as the induced order topology. The sub-basis for K is given by all sets of the form 

(a, .) = {t | teK, a < t) and 

(., b) = {t\ teK, t < b) , a,beK . 

Ordered continua C are connected ordered compacta and can be characterized as 
continua having at most two non-cut points (see e.g. [7]) or as locally connected 
continua irreducible between two points (see e.g. [33]). According to another 
characterization ordered continua are chainable locally connected continua [14]. 

There are many different ordered continua C, even many different ordered 
continua C with the property that all non-degenerate subcontinua of C are homeo-
morphic with C (see [1], [2], [25]). The arc I is the only ordered continuum which is 
metrizable. Notice also that ordered compacta K can be considered as closed subsets 
of ordered continua C. 

The non-metric analogues of Peano continua are (Hausdorff) spaces X obtainable 
as images of ordered continua C under maps / : C -> X onto X, / (C) = X. For these 
spaces we use here the abbreviation IOC (images of ordered continua). For spaces X 
obtainable as images of ordered compacta K under maps / : K -» X onto X, f(K) = 
= X, we use here the abbreviation IOK. Clearly, IOK's form a subclass of the class 
of (Hausdorff) compacta, while the IOC's form a subclass of the class of locally 
connected continua. In both cases we actually have proper subclasses. 
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The ЮK's play a major role in the study of the ГОCs. In 1960 P. Papić and the 
author [17] conjectured that a connected and locally connected IOK is in fact an ЮC. 
This conjecture is still unsettled. 

1. Irreducible and light maps 

A map / : Y-> X onto X is said to be irreducible provided no proper closed 
subset Y0 of Ymaps onto X under the restriction/ | Y0. Notice that irreducible maps 
map non-empty disjoint open sets into sets with disjoint non-empty interiors [4]. 
Furthermore, if a set D c K has the property that/(D) is dense in X a n d / : K -> X 
is an irreducible map onto X, then D is dense in K [26], 

A m a p / : K -» X onto X is said to be light (in the sense of the order < on K) 
provided there is no pair of (distinct) points tl9 t2eK, t x < t2, such that / maps the 
segment [l l5 l2] = {t \ t eK, tx <£ t ^ t2} into a single point. 

One can assume without loss of generality that every IOK X is the image of an 
ordered compactum K under a map / : K -> X which is simultaneously light and 
irreducible. 

2. Numerical invariants and mappings of ordered compacta 

With every compactum Y we can associate several cardinals which are topolo
gical^ invariant. The weight w(Y) is the least cardinal of a basis for the topology of Y. 
The local weight lw(Y) is the least upper bound of w(Y, y), y eY, where w(Y, y) is the 
character of Yat y, i.e. the least cardinal of a basis at the point y e Y. The density or 
degree of separability s(Y) is the least cardinal of a subset dense in Y. Finally, the 
Kurepa-Suslin number or degree of cellularity c(Y) [10] is the least upper bound of 
cardinals of families of non-empty disjoint open subsets of Y. 

Theorem 1. If K is an ordered compactum and f: K -> X is an irreducible 
mapping, then s(K) = s(X) and c(K) = c(X) (see [19], [26] and [4]). 

Theorem 2 [19]. If K is an ordered compactum and f: K -> X is a light 
mapping onto an infinite space X, then w(K) = w(X) and lw(K) ^ lw(X). 

Notice that a light irreducible map can actually increase the local weight (see 

[19]). 
An immediate consequence of Theorems 1 and 2 is this 

Theorem 3 [19]. IfX is an IOK, then X is the image of an ordered compactum K 
such that w(K) = w(X), lw(K) = lw(X), s(K) = s(X), c(K) = c(X). 

Since w, Iw, s and c are monotonously increasing functions on closed subsets of 
ordered compacta, one obtains immediately: 
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Theorem 4 [19]. If X is an ЮK and X0 is a closed subset of X} then w(X0) = 

й w(X), lw(X0) = lw(X), c(X0) = c(X), s(X0) й s(X). 

The íìrst two of these inequalities are elementary and valid for arbitrary compacta. 
Not so the last two. E.g. if т > K0, then the cube ľ has the the Suslin number c(ľ) — 
= K0 [24], but ľ contains closed subsets X0 with c(X0) > K0, e.g. the "long line,ł 

[0, co^. Thus, Theorem 4 implies that the cube ľ is an IOK if and only if x = K0, 

3. Comparison of numerical invariants for lOK's 

Using Theorem 3 P. Papic and the author ([18] and [19]) have proved this: 

Theorem 5. // X is an IOK then c(X) = Ka, a = 0, if and only if each open 
subset V c X is the union of ^ K a closed subsets of X. 

In particular, note this: 

Corollary 1 ([18] and [19]). If X is an IOK, then X has the Suslin property 
(i.e. each family of disjoint open sets is at most countable) if and only if each open 
subset V G X is an Fa-set. 

An immediate consequence is 

Theorem 6 [19]. If X is an IOK, then 

lw(X) ^ c(X) ^ s(X) ^ w(X) . 

Corollary 2 ([18] and [19]). If X is an IOK with the Suslin property (in parti
cular ifX is separable), then X satisfies the first axiom of countability, i.e. lw(X) ^ K0, 

Since every diadic compactum X has the Suslin property [24] and since diadic 
compacta satisfying the first axiom of countability are metrizable [5] (see also [4]), 
we see that Corollary 2 implies this: 

Theorem 7 ([18] and [19]). If a compactum X is at the same time diadic and 
an IOK, then X is metrizable. 

This theorem establishes a conjecture of P. S. ALEKSANDROV. 
Another application of Theorem 3 yields this: 

Theorem 8 [19]. The following two statements are equivalent: 

(i) IfX is an IOK, then c(X) = s(X). 
(ii) If C is an ordered continuum, then c(C) = w(C). 

(ii) is the generalized Suslin problem [10]. 

We now introduce two more invariants oc(X) and o°(X). We say that a family S 
of subsets of X is a separating family provided for every pair of closed disjoint 
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subsets M, N czX there is a member Se ® such that X \ S is the union of two sets U, V 
with the property that M c U, N c V, 17 n V= Un V= 0. The number a°(X) (ac(X)) 
is defined as the least cardinal of a separating family S consisting of open (closed) 
subsets. 

Theorem 9 (see [15]). If X is an IOK, then 

c(X) ^ a°(X) ^ ac(X) £ s(X) . 

To show that c(X) ^ a°(X) consider a family of non-empty disjoint open 
subsets {Ua}, aeA, and choose, for each a e A, a point xa e Ua. Since there is a separat
ing family ® of cardinality fg<T°(X) consisting of open sets, we can separate {xa} 
from X \ Ua by a member S a eS . All 5a, ae/1, are distinct because they belong to 
disjoint sets Ua. It follows that the cardinal k(X) <i a°(X) and thus c(X) S a°(X). 
The same argument shows that c(X) ^ ac(X). 

In order to show that a°(X) ^ ac(X), it is enough to apply Theorem 5 and the 
fact that c(X) ^ &C(X). It follows that each closed subset is the intersection of <lac(X) 
open subsets. Therefore, if we have a separating family g of closed subsets and kgf = 
= ac(X), then we obtain a separating family It of the same cardinality as $ t>ut con
sisting only of open sets (see [16]). This proves the inequality a°(X) ^ ac(X). 

The inequality ac(X) ^ s(X) is proved in [15]. 

4. A metrization theorem for compacta 

A new metrization theorem has been proved recently in [16]. To state this result 
we need a new numerical invariant JLI(Y). 

Given a compactum Y, consider all closed subsets A c: Yand for each A consider 
the space of components Z(A). It is well-known that Z(A) is always a zero-dimensional 
compactum. Let 

p(r) = i.u.b.{w(z04))}, 

where A <= Yruns through all closed subsets A of Y. 

Theorem 10 (see [16]). If Yis a (Hausdorff) compactum, then 

w(Y) ^ max {a°(Y), fi(Y)} . 

In particular, if a°(Y) ^ K0 and pt(Y) _ K0, then Y is metrizable. 

Notice that always c(Y) ^ fi(Y) [16]. Therefore, for X an IOK the hypothesis 
c(X) = s(X) (equivalent to the generalized Suslin problem by Theorem 8) implies 
(by Theorem 9) that 

a°(X) ^ s(X) = c(X) S fi(X) . 

so that max {o°(X), fi(X)} = fi(X). Generalizing [16] we can now prove: 
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Theorem 11. The generalized Suslin problem is equivalent to the assertion that 
the inequality w(X) <£ pt(X) holds for all IOK's. 

5. Frontiers of open sets and topological limits 

In [15] the following result is proved. 

Theorem 12. Let X be an IOK and let G be an open subset of X which is the 
union of ^K a compact subsets. Then s(Fr G) S Ka- In particular, the frontier of an 
open Fa-set in X is separable. 

A. J. WARD in [30] has studied extensively properties of limits of disjoint closed 
subsets in an IOK. Here is one of his results (stated under somewhat stronger 
assumptions). 

Theorem 13 [30]. Let X be an IOK and let {Fa}, 0 ^ a < co0, be a well-ordered 
sequence of disjoint non-empty closed subsets of X. If 0 = 0, then IImtopFa is 
separable. If 0 ^ 1, then Hm top Fa is a finite set. 

From the same paper we also quote: 

Theorem 14 [30]. Let X be an IOK and let {Fa}, cce A, be a disjoint family of 
closed subsets with the property that 

Fao n C l [ U i ?
a ] = 0 , for each <x0eA. 

a=J=ao 

Then there is a family of disjoint open subsets Va, a e A, such that Fa c= Va. Further-
more, each IOK is a completely normal space. 

To prove the first statement (formulated by the author and proved by A. J. 
Ward) it is enough to prove it for ordered compacta, because the property is preserved 
under continuous maps of compacta. 

As an easy application one obtains this: 

Theorem 15 (see [30]). Let X be an IOK and let {Fa}, a e A, be a net of disjoint 
subcontinua Fa c X with the property that Fa n CI [ U Fpj = 0, for each a e A. 

Then either lim top Fa contains at most one point or for some a0 the set {a | a ^ a0} 
is at most countable (see [30]). 

Indeed, if xl9 x2 e lim top Fa9 xx 4= x2, then we can easily find disjoint neighbor
hoods Ul9 U2i xx e Ul9 x2 e Ul9 which are open F^-sets. It follows, by Theorem 12, 
that Fr Ut and Fr U2 are separable spaces. Clearly, there is an a0 e A such that for 
each a ^ a0 the continuum Fa meets both Ux and U2 and therefore meets also Fr Ux. 
By assumption and Theorem 14 the sets F a n Fr (7l5 a ^ a0, can be surrounded by 
disjoint open sets of Fr U± and since Fr Ux is separable, it follows that the set 
{a I a ^ a0} is at most countable. 
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6. The product theorem 

Theorem 16. / / X and Y are infinite compacta and X x Y is an IOK, then 
both X and Y are metrizable. 

This theorem was first proved under stronger assumptions that X x Yis an IOC 
[17] (see also [12]). The present form was obtained independently by A. J. Ward [30] 
and L. B. Treybig [26]. For two other proofs of Theorem 16 see [15]. 

We also quote here a result of W. W. Babcock related to the product theorem: 

Theorem 17 [3]. Let m, n be integers such that 1 <̂  m < n, let Kh i = 1, ..., m, 
be separable ordered compacta and let XjJ = 1, ..., n, be non-metrizable compacta. 
Then no open onto mapf\K^ x ... x Km -* Xt x ... x Xn exists. 

This result suggests that one can expect interesting results by studying images of 
products of ordered compacta. 

7. Connected IOK'S 

Treybig proved in [27] the following: 

Theorem 18. If a continuum X is an IOK, then s(X) = w(X). 

The theorem was first proved by P. PAPI6 and the author [19] under the addition
al assumption that X is locally connected (see also [17]). 

Now Theorem 18 can be derived as a corollary of this more general 

Theorem 19 (see [16]). Let X be an IOK and let G be an open subset of X which 
is the union of ^K a compacta. If CI G is connected, then w(Fr G) ^ Ka. 

Corollary 3 [16]. If X is an IOK and G is an open Fa-set with connected closure 
CI G, then Fr G is metrizable. 

As a first step in the proof of Theorem 19 one applies Theorem 12 and concludes 
that s(Fr G) ^ Ka. It follows, by Theorem 9, that <r°(Fr G) = Ka. Here is the product 
theorem an important tool. The arguments given in [16] readily extend to the 
present more general case. Finally, one applies Theorem 10 and concludes that 
w(Fr G) S Ho

using Theorem 18, Treybig proved in [27] this interesting 

Theorem 20. A connected IOK X is either metrizable or there exist two points 
x0, xteX [possibly identical) such that X \ {x0, xt} is not connected. 

This theorem shows clearly the essentially new features of the non-metric case in 
the Hahn-Mazurkiewicz problem. 
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8. Locally connected IOK'S and local peripheral metrizability 

Using repeatedly normality we can easily show that every locally connected 
compactum admits a basis consisting of open connected Fff-sets. This remark together 
with Theorem 19 yields this: 

Theorem 21 [16]. Every locally connected IOK X is locally peripherally 
metrizable, i.e. admits a basis of open sets with metrizable frontiers1). 

Corollary 4. Every IOC is locally peripherally metrizable. 

9. Connectedness by generalized arcs 

The classical arc theorem due to R. L. Moore [23] states that any two points of 
a Peano continuum are end-pojnts of an arc I. In general we say that a space X is 
connected by ordered continua or connected by generalized arcs provided for any 
pair of points x0, xxeX there is an ordered continuum C a X such that x0 and xx 

are the two end-points of C. Around 1941 A. D. Wallace raised the question whether 
every locally connected continuum is connected by generalized arcs. A counter
example was described in [13]. Notice that A. J. Ward proved [28] that all IOC's are 
connected by generalized arcs. It seems likely that all connected locally connected 
IOK's have the same property. An interesting theorem on the existence of generalized 
arcs in partially ordered continua was obtained by R. J. Koch in [8] (see also [31]). 
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