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CONVERGENCE STRUCTURES 

M. KATĚTOV 

Praha 

In recent years, a number of structures similar to but richer than the classical 
continuity structures (i.e. topology, proximity, uniformity) have drawn the attention 
of mathematicians. Only one of these has been treated monographically, namely the 
syntopogenic spaces; but a series of papers has appeared on various types of such 
structures. 

This paper treats two types of continuity structures, namely the convergence 
structures (Definition 3) and the merotopies; the latter, considered by the author in [4], 
have already occurred implicitly in the papers [5] of K. Morita. In the present note, 
it is stated that convergence structures are equivalent, in a specified sense, to a type 
of merotopies. Therefore, an explicit mention of convergence structures is sometimes 
omitted, and the formulations concern rather the merotopies. 

All proofs are omitted, and the references are strongly restricted. However, the 
papers of H. R. Fischer [3], C. H. Cook and H. R. Fischer [2] and H. Poppe [6] 
should be mentioned. Some notions and propositions contained in the present note 
are closely related to the content of these papers. As for further bibliography, we 
refer to [4] and [6]. 

Besides current terminology and notation, we use a few terms and symbols 
from [1]; these are introduced explicitly unless they are self-explanatory or well 
known. As usual we sometimes denote, e.g., a space and the set of its points by the 
same symbol. 

Definition 1. Let M = {xa | a e A] be a net (i.e., a family indexed by a directed 
set). A net IV = {yb \ b e B} is called a quasi-subnet of M if for any a0e A there is 
a, b0e B such that b §: b0 implies yb = xa for some a ^ a0. 

Remark. Clearly, every subnet or generalized subnet (e.g., in the sense of [1], 
p. 266) is a quasi-subnet. On the other hand, a quasi-subnet IV of a net M need not 
be a generalized subnet of M. An example: let D be an uncountable set, let A consist 
of all finite sets a c D and let A be ordered by inclusion; for any a e A put xa = 
= card a. Put M = {xa | a e A}; put IV = {n\ne N}. 
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Definition 2. A non-void class A of non-void directed sets is called admissible 
iff it contains all subsets cofinal to, and also all isomorphs of its members. 

Definition 3. Let A be an admissible class of directed sets. Let E be a set. 
Let 5£ be a class of pairs <M, x> such that 

(0) if <M, x> e <£, then xeE and M is a net of elements of £; 
(1) if <M, x> e <£, then M is of the form M = {xa | a e A} for some Ae A; 
(2) if <M, xy e S£ and TV = {j61 b e B}, B e A, is a quasi-subnet of M, then 

</V, x> e S£; 
(3) if x e E, Ae A and xa = x for every a e A, then <{xfl | a e A}, x> e <=$?. 
(4) if <{xfl | a e A}, x> e i?, y e E, A! a A is cofinal and xa = y for a e A!, 

then <{xa | a e A), yy e <£; if Ae A, A' cz A, xeE, xa = x for a e A — A' and 
<{xa | a e A'}, xy e ££, then <{xa | a e A), x> e S£. 

Then ££ is called an A-convergence structure (or A-convergence) on F, and the 
pair <£, JS?> is called an A-convergence space. 

Remarks . 1) The concept just defined differs essentially from that introduced 
under the same name in [1], p. 645. Other related concepts based on the convergence 
of sets may be introduced, and each of them may possess certain specific advantages. 
The notion introduced in this note seems to be convenient if a close relationship 
with filter convergence is desirable. 

2) Condition (4) is somewhat clumsy; unfortunately, if it is dropped, then the 
equivalence of convergence and LF-merotopic spaces asserted in Theorem 1 does not 
hold. 

Definition 4. Let Al9 A2, Ax a A2, be admissible classes of directed sets. Let $£t 

be an ^-convergence on Eh i = 1, 2. Then a mapping/ : <£ l9 5£{} -> <£2, J£?2> is 
called continuous iff <{xa | a e A}, x> e <£x always implies <{/xa | a e A},fxy e 5£2. 

In Definition 3 and 4 there figures an external concept, namely that of an index 
set and of a class of such sets. To transpose the formulation so as to concern internal 
concepts only (i.e., formulated in terms of the basic set) is an interesting problem. 
A solution has been given by H. R. Fischer [3]. In this note a different approach is 
adopted, namely via the merotopic spaces [4]. 

We recall some basic definitions. 

Definition (see [4], 1.4). Let £ be a set. Let F <= exp exp E be such that (l) if 
Jt eT, Jtt cz exp E and to each Me Ji there is an Mx e Jtx with Mt <= M, then also 
Jt± e T; (2) if Jtx u Jt2 e T then Jix e T or J(2 e T; (3) ((x)) e F for all xeE; 
(4) (0) G r, 0 $ F. Then F is called a merotopic structure, or merotopy, on E; <F, F> 
is termed a merotopic space. Members of F are said to be micromeric. 

Definition (see [4], 1.7). If <£,-, £*>, i = 1, 2, are merotopic spaces, then 
a mapping / : <£1? r x > -> <£2, F2> is called continuous if f\Jt\ e F2 whenever 
Jt e rt. 
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Example 1. Let <£, w> be a topological space (or a closure space, see e.g. [1]). 
If £ 4= 0, let ru consist of all M <= exp £ such that, for some x e £, every neighbor
hood of x contains some M e M; if £ = 0, let FM = ((0)). Then FM is a merotopy; 
we shall say that it is induced by the topology (or closure structure) u. 

Example 2. Let <£, ?̂/> be a uniform space (% is the collection of all uniform 
neighborhoods of the diagonal). Let Tu consist of all M c exp £ such that, for any 
U e<%9 there is an M e M with M x M c I/. Then rm is a merotopy; we shall say 
that r% is induced by the uniformity °U. 

Example 3. Let D be a set. Let ST be a non-void collection of closed subsets 
of j8D, and let (x) belong to 2T for any x e D. Let F(5~) consist of all M c exp D 
such that, for some Te 2T, every neighborhood of Tin $D contains some M e M. 
Then T(3~) is a merotopy on D. — It can be shown that (i) F(^") is a filter-merotopy 
(see below) (ii) if F is a filter-merotopy on D, then there exists exactly one 2T with the 
properties described above and such that F = E(ST). 

Definition (see [4], 1.21). Let F be a merotopy on £; for every X a E let TrX 
consist of all x e £ such that, for some micromeric M, M e M implies x e M, and 
M n X 4= 0. Then i r is a closure structure on £ (i.e., t r 0 = 0, Tr(KuY) = TrX u 
u i r 7 , I c TrK); we shall say that r r is induced by the merotopy F. 

Definition (see [4], 1.17). Let F be a merotopy on £. A system 0 , 0 c F, will 
be called fundamental (for F) if F cz A whenever A is a merotopy on £ with 0 cz A. 
A collection &, & cz exp £ will be called a base (for F) if there is a fundamental 
system 0 such that \J0 cz J*. 

Remark. If 0 is a system of filters, then there exists exactly one merotopy for 
which 0 is fundamental. 

Definition (see [4], 2.1). Let F be a merotopy on a set £. Then F is called a filter-
merotopy and <£, F> is called & filter-merotopic space if there exists a fundamental 
system consisting of filters. 

Definition 5. Let <£, F> be a merotopic space. We shall say that a micromeric 
collection M is localized at a point a e £ iff the collection of all M u (a), M e M is 
micromeric. The merotopy F (and also the space <£, F>) will be called localized iff 
either £ = 0 or every micromeric M is localized (at some point of £). A localized 
filter-merotopy (filter-merotopic space) will be also called an LF-merotopy (an 
LF-space). 

Proposition 1. Let A be an admissible class of directed sets. Let S£ be an A-
convergence structure on a set E. If <M, x> e S£, M = {xa | a e A}, let #"<M, x> 
consist of all sets Xa u (x), where Xa is the set of all xa. with a! e A, a' ^ a. Then 
the system of all collections J r<M, x>, <M, x} e JSf, is fundamental for a merotopy T 
and r is a localized filter merotopy. 
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Definition 6. The merotopy F just described will be denoted by \iJ£, and <£, ]iSCy 
will be denoted by |i<£, J£}. 

Proposition 2. Let A be an admissible class of directed sets. Let F be a merotopy 
on a set E. Let S£ consist of all pairs <M, x} such that (i) x e E, M is a net {xa | a e 
e A}, xae E, Ae A, (ii) the collection of all sets Xa u (x), a e A, where Xa consists 
of all xa>, a eA, ar ^ a, is micromeric. Then S£ is an A-convergence structure on E. 

Definition?. The convergence structure S£ just described will be denoted by kAT, 
and <£, ^F> will be denoted by >^<£, F>. 

Remark. Clearly, kAT -# kAT if A, A' are two distinct admissible classes. It is 
also easy to see that, in general, even for LF-merotopies F, \ikAr 4= K. 

Definition 8. Let A be an admissible class of directed sets. A merotopy F on 
a set £ is said to be an A-convergence-merotopy if F = \iSf for some ^-convergence 
structure S£. 

Theorem 1. Let A be an admissible class of directed sets. If S£ is an A-
convergence structure on a set E, then XA\iJ£ = S£\ If T is an A-convergence 
merotopy on a set E, then \ikAr — F. If S£\ is an A-convergence on E{, i = 1,2, 
and f : <£1? S£\} -» <£2, S£'2> is continuous, then f : <£1? fii?\} -> <£2, H^2> *5 

also continuous. If rt is a merotopy on E{, i = 1, 2, and f : <£1? Ft> -» <£2, F2> 
is continuous, then f : <£1? ^ F ! > -> <£2, X^F2> is continuous. 

Remark. The theorem (which is proved quite easily) asserts essentially that, 
for any admissible A, "the category of all ^-convergence spaces" and that of all 
^-convergence-merotopic spaces are isomorphic. However, in the frame of the current 
theory of classes and sets, this statement is not correct since ^-convergence structures 
are proper classes. 

We are now going to consider the cartesian products. 

Definition (see [4], 3.5). Let Z 4= 0 be a set; let {£z | z e Z} be a collection of 
non-void sets; we denote by prz the projection of the cartesian product £ = n (^z} 
onto £z. For any z e Z let Fz be a filter-merotopy on £. Let 0 be the system of all 
filters 3F on £ such that, for any z e Z, prz [#"] is micromeric (with respect to Fz). 
Let F denote the merotopy for which 0 is fundamental; then F is a filter merotopy. 
We shall call <£, F> the cartesian product of {<£z, Fz>} and denote it by f]{<£z, Fz>} 

Now let an admissible class A be given. For every z e Z let S£z be an A-
convergence structure on £z. Let S£ be the class of all pairs <M, x} such that x e £, 
M = {xa | a e A} where xa e E and for any z e Z the pair <{prz xa | a e A}, prz x> 
belongs to S£z. Then S£ is an A!-convergence structure on £. We shall call <£, S£> the 
cartesian product of {<£z, S?z}} and denote it by ]~]{<£z, J2

?
z>}. 

The following proposition is rather important, even though it is almost evident. 
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Theorem 2. Let A be an admissible class of directed sets. Let {Ec J c e C} be a 
non-void family of non-void sets. For any ce C, let Fc be a filter-merotopy on Ec 

and let &c = XArc. Then l\{<Ec ^ c > } = K Y\{<Ec rc>}-
C C 

Remarks . 1) The equality f l O 1 ^ ^?z>} = ^ F I K ^ ' &z>} d o e s n o t h o l d i n 

general (not even for the case of two factors). A well known example: A consists of N 
and all its isomorphs, <£, Q} is a metric space, S£ consists of all <{xrt | n e IV}, x> 
with IVe A, xn e £, x e £ , g(xn, x) -> 0. If x e £ is non-isolated, x„ e £, xn 4= x for 
every n e N, and x„ —> x, then let Jl be the collection of all sets Xitj9 where Xi} 

consists of all points <xm, x„> with m = i, n = j . Clearly Jl is micromeric in 
<£, jiJS?> x <£, |US?>, but is not such in [ i«£, Se> x <£, i ? » . 

2) Observe that if Fc are ^-convergence-merotopies, then n ]^]{<£c, XAFcy} is 
the product of {<£c, Fc>} in the category of all ^-convergence-merotopic spaces. 

3) Theorem 2 may be conceived as a special case of similar theorems concerning 
spaces of mappings of convergence space. However, we shall not consider these 
questions now. 

In what follows, convergence structures will seldom be mentioned explicitly. 
However, the results concerning localized filter merotopic spaces can be transposed, 
according to Theorem 1, to propositions on convergence spaces, although the 
formulations involving merotopies are sometimes more convenient. 

The topics considered include embedding of LF-spaces, inductive generation, 
fine merotopies, certain separation properties. First we recall or introduce some 
definitions. 

Definition 9. If <£, F> is a merotopic space, then a collection "T consisting of 
subsets of £ is called a T-cover or a merotopic cover, or merely a cover, iff to any 
Jl e T there exist M e Jl and Ve°T with M c K A system 0 of covers is termed 
determining (or complete) iff every cover °U can be refined to some cover f e f t 

Definition 10. A merotopic space <£, F> is called semi-separated if A a E, 
(A) e r, imply that A contains one point at most. 

Definition 11. The least cardinality of bases of a merotopic space is called the 
weight of the space. 

Definition 12. Let <£, F> be a merotopic space. A subset X c £ is called func
tionally closed iff to each x e E — X there is a continuous f : £ -> R with f[K] = 
= (0),fx = 1. The space <£, F> is termed completely regular (in the weak sense — 
however this qualifier will be omitted since strong complete regularity will not occur 
here) iff the functionally closed sets constitute a base. 
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An ^-convergence space <£, JS?> is called A-completely regular iff S£ = XAr 
for some completely regular LF-space <E, F>. The least weight of such a space 
<£, F> is termed the A-weight of the ^-convergence space <£, J5?>. Analogously 
(using yCkA instead of XA) one defines the A-completely regular LF-spaces, and their 
A-weights. 

Theorem 3, Let m be an infinite cardinal. Then there exists a completely 
regular semi-separated LF-space Ym with weight m into which one can embed every 
completely regular semi-separated LF-space of weight ^ m . 

Furthermore, if A is an admissible class of directed sets, then every A-
completely regular semi-separated A-convergence space with A-weight ^ m can be 
embedded into the A-convergence space ^AYm. 

The spaces Ym will now be described; of the proof of this theorem only the basic 
ideas will be indicated. 

One starts with the topological space [0, l ] m , denoted by K; let OeK be the 
element with zero coordinates. Now take any set B of cardinality m, form KB, and 
for every p e B take the set Kp of all x e KB with x(P) = 0. Set S = \JKp (thus S 
consists of all elements of KB with 0 among their coordinates). On 5 one defines a mero-
topy thus: for each /? choose some fundamental system 0p of the space Jfp (considered 
as a space whose merotopy is induced by a topology), and then take 0 — \J0fi as 
a fundamental system for the space S. Obviously L has weight m, and it is easily 
verified that S is completely regular. Finally let Ym be the cartesian product Sm. 
That Ym is a completely regular LF-space follows from simple general theorems on 
products of merotopic spaces, which will be omitted here. The possibility of 
embedding any completely regular LF-space <£, F> of weight ^ m into Ym is based 
on the fact that such a space must have a complete system (with cardinality ^ m) of 
covers fa; each of which consists of ^ m functionally closed sets. These latter may . 
then be written as <p-1[0] for appropriate continuous cp : <£, F> -> K; the entire 
cover can then be described in terms of a map f into S (each member of the cover has 
the form f"1^]). 

Definition (see [4], 1.13). Let A be a set; for every aeA, let <Efl, Fa> be a merotop
ic space. Let X be a set and for every aeA letffl : <£fl, Fa> - > I b e a mapping. Then 
there exists a finest merotopy F on X rendering continous all fa : <£a, Fa> -> <X, F>. 
The merotopy F is said to be inductively generated by the family {fa}. If <£, F> is 
a merotopic space, X is a set, f: <£, F> -> X is a surjective mapping, and A is the 
merotopy generated by {f}, then (X, zl> is called the quotient of <£, F> relative 
t o / ; we denote <K, Ay by <X, F>// 

A surjective mapping/ : <£1? Ft> -> <£2, F2> such that <£2, F2> = <El5 F^// 
is called a quotient mapping. 

Theorem 4. Every merotopic space is the quotient of some uniform space (i.e., 
of the merotopic space induced by a uniform space as described in Example 2). 
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Theorem 5. Every localized filter-merotopic space <£, F> is the quotient of 
a topological space (i.e., of the merotopic space induced by a topological space); 
this latter may be taken as the sum of Hausdorff spaces with a unique non-isolated 
point; if <F, F> is semi-separated, then the quotient mapping may be taken so that 
the inverse images of points are closed sets. 

Proposition 3. Let <£, F> be a semi-separated localized filter-merotopic space. 
The following two conditions are equivalent: 

(a) <F, F> possesses an irreducible fundamental system, i.e. a fundamental 
system 0 such that no 0' c 0 , 0' =|= 0, is fundamental, 

(b) there exists a closure space <X, w> and a quotient mapping f: <K, Fu> -> 
-> <F, F> such that no surjective partial mapping distinct from f is a quotient 
mapping. 

Remark. A space <X, u> with properties described in (b) may be called 
a "resolvent" of <F, F>. In general, a space <F, F> may possess several distinct 
resolvents. The resolvent to be described seems to possess many convenient properties. 
Let 0 be an irreducible fundamental system. For any Ji e 0, f\Jt is a singleton; we 
put (\Jt = (fM). A closure structure u on 0 is determined as follows: a complete 
collection of neighborhoods of JtQ e 0 consists of all H(M0, M) where M e JtQ 

and H(JtQ, M) is the set of all Jt e0 such that either (i) fJt e M, fJt + fJt0, 
or (ii) M belongs to Jt. It is easy to see thatf : <0, FM> -» <£, F> possesses properties 
described in (b). 

We now turn to fine merotopies (roughly speaking, a merotopy F on E is "fine" 
if there is no merotopy T' which is strictly finer than F and induces the same closure 
structure, and satisfies certain further conditions). 

Definition 13. Let (Et, rty be merotopic spaces, / = 1, 2. A mapping f : 
: (El9 F!> -» <£2> r2y is called (i) quasi-compact iff to any filter Jt in E with 
f\Jt\ e F2 there exists a Fj-micromeric filter Jtx minorizing Jt (this means that for 
any Me Jt there exists a M± e Jtt with Mx c M), (ii) G-quasi-compact, if to any 
filter Jt of open sets in E w i t h f [ ^ ] e F2 there exists a Fi-micromeric filter Jtt of 
open sets minorizing Jt. 

Remark. In the case of topologically induced merotopies a mapping is quasi-
compact iff all inverse images of points are compact. 

Definition (see [4], 2.4). A space <F, F> is called regular if for any Jt e F the 
collection of all M for M e Jt is micromeric. 

Theorem 6. Let <F, w> be a regular semi-separated topological space. Then 
there exists precisely one localizedfilter-merotopy 0 on E such that (1) 0 induces u, 
(2) the identity mapping J : <F, 0> -> <F, FM> is quasi-compact, (3) <£, 0> is 
regular, (4) 0 is the finest localized filter-merotopy with properties (1) to (3). 
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A fundamental system for this merotopy 0 consists of all collections ^ where ^ 
is any maximal filter of non-void sets in E, <S consists of all G, G e<S, and (\S 4= 0. 

Definition 14. A merotopic space <£, F> is called semi-regular iff it has a base 
consisting of sets of the form E — %r(E — xrX). 

Theorem 7. Let <£, u) be a semi-separated topological space. Then there exists 
precisely one localized filter-merotopy 0* on E such that (l) 0* induces u, (2) the 
identity mapping J : <£, 0*> -» <F, FM> is G-quasi-compact, (3) <£, F> is semf-
regular, (4) 0* is the finest localized filter-merotopy with properties (l) £o (3). 

.4 fundamental system for 0* consists of all collections <S* where <S is any 
maximal filter of non-void open sets in E such that f){G \ G ecS) is non-void [hence 
a singleton (x)) and *S* consists of all (x) u G, G e*S. 

Remarks . 1) If <£. u> is paracompact, then the following covers constitute 
a complete system of merotopic covers of <£, 0> : if = {Va} where Va is a disjoint 
locally finite collection of open sets with \JVa — E. 

2) By the preceding remark, <£, 0> is compact whenever <£, u> is compact. 
3) It is not difficult to show that both 0 (the "fine regular localized merotopy" 

of <£, u>) and 0 * (the "fine semi-regular localized meorotopy" of <£, u}) possess 
a resolvent. It may be shown that a suitable resolvent coincides, under certain fairly 
weak assumptions, with the "absolute" in the well-known sense of V. Ponomarev. 

4) In the specification of the fundamental systems indicated in theorem 6 and 7, 
if one omits the condition f)G 4= 0, then one obtains coarser merotopies, leading to 
familiar compactifications and H-closed extensions. 

To conclude this section, some separation properties will be introduced. 

Definition 15. Let <£, F> be a merotopic space. We shall consider the following 
conditions: 

(H) If Jtt e r, Jt2 e r and Mt n M2 4= 0 whenever M£ e Jtt, then \Jtx~] u 
u [y#2] (i-e. the collection of all Mx u M2 with Mt e Jtt) is micromeric; 

(UH) For every F-cover % there is a F-cover if with the following property: 
if Vt eT,V2e if, Vx n V2 =}= 0, then VtvV2c:U for some UeW; 

(SH) If 0 is a non-void system of finite non-void centred collections 2T a exp £, 
and every Jt c exp £ intersecting all collections ST e 0 is micromeric, then the col
lection of all \}ST, ST e 0, belongs to F. 

If condition (H) is satisfied, we shall call <£, F> a Hausdorff merotopic space. 
If condition (UH) or (SH) is satisfied, <£, F> will be called a UH-merotopic or SH-
merotopic space, respectively. 

Remarks . 1) If <£, u} is a Hausdorff closure space, then <£, FM> is an SH-
space. However, there exist completely regular Hausdorff LF-merotopic spaces which 
do not satisfy condition (SH). 

2) A Hausdorff topological space need not be a UH-space. 
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We shall now define the merotopic linear spaces. For convenience we shall 
consider real linear spaces only. 

Definition 16. Let £ be a linear space and let F be a merotopy on E such that 

(1) if Jtu Ji2 are micromeric, then the collection of all [M J 4- [M2] with 
My e Mx, M2 e Ji2, is micromeric, 

(2) if Jt e F and 3§ is localized micromeric in R, then the collection of all 
[£] . [M] with B e 3$, M e Jl, is micromeric. 

Then we shall say that F is an admissible merotopy for E and that <F, F> is a 
merotopic linear space. 

Remarks. 1) If F is a filter-merotopy, then the above conditions express, of 
course, the continuity of the mappings <x, y} -> x + y (of E x E into E) and 
<a, x> -> a . x (of R x £ into £). 

* 2) It is easy to see that every semi-separated merotopic linear space is a Hausdorff 
space. 

Definition 17. Let £ be a linear space. If F is an admissible merotopy on £, let 0 
consist of all collections «>T obtained as follows: if Jt e F and s is a mapping of Jt 
into £, then Jf = C/C(Jt, s) consists of all s(M) + M, M e Jt. There exists an admis
sible merotopy F* for which 0 is a fundamental system. If every F*-micromeric 
filter is localized, we shall say that <£, F> is L-complete. 

Definition (see [4], 3.6). Given filter-merotopic spaces 3C = (X, F> and Of = 
= (Y, Ay, the set C of all continuous mapsf : 2£ -> <$/ is endowed with the merotopy 
whose fundamental system consists of all filters #" on C such that, for each Jt e F, 
the collection 2F\Jt\ (i.e., the collection of all £[M] with F e f , Me Jt) belongs 
to A; the resulting filter-merotopic space is denoted by ty®. 

Remarks. 1) The merotopy just described is the coarsest of all merotopies on C 
rendering continuous the evaluation mapping {<f, x> ->fx}. 

2) It is easy to prove that if 9£, ®/ are LF-spaces and <3( is regular, then <&* is 
also a regular localized filter-merotopic space. 

Definition 18. A subset I of a merotopic linear space <£, F> is called L-
functionally closed iff, for every x e £ with x $X9 there exists a continuous linear 
function f : <£, F> -» R such thatfx > supf[X]. If L-functionally closed sets consti
tute a base, then <£, F> is called basically convex (or simply convex). 

Theorem 8. Let <£, F> be a filter-merotopic space. Then K<E,r> is an L-complete 
convex merotopic space satisfying condition (SH). 

Remarks . 1) For any e > 0 and any V c £, let $(V, s) denote the set of all 
fe KE such that |fx| ^ 8 whenever x e V. If et > z2 > ..., ek -> 0, and {fk} is 
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a sequence of covers of <L, F> such that ir

k+x refines Vk, let #" = ^({fk}, {ek}) 
consist of all finite intersections of sets <P(V, ek) with Vei^k. It is easy to see that every !F 
is micromeric, and every filter in R<E*r> localized at 0 refines some ^({i^k}, {ej). 

2) If Jt e F, 8 > 0, let i^(Jt, a) consist of all V(M, s), M e Jt. It can be shown 
that, for every collection 9* micromeric in R< E ' r > and localized at 0, every Jt eF, 
and every s > 0, there exist F e « f and M e Jt such that F c V(M, e) e "V(Jt, s). In 
other words, every ^(Jt, e) is a "merotopic cover at 0"; in addition, the collections 
"T(Jt, e) form what may be called a "complete system of merotopic covers at 0". 

Theorem 9. Let a completely regular semi-separated localized filter-merotopic 
space <F, F> satisfy condition (SH). For an x e E, let (px be the mapping of R< E , r > 

into R assigning fx to f. Then, with L = R< £ ' r >, cp : <F, F> -> RL is an embedding, 
i.e. both cp and cp~l : cp\_E] -> <£, F> are continuous. 

Definition 19. If L = <L, F> is a filter-merotopic linear space, then II denotes the 
linear space of all continuous linear forms on L endowed with the merotopy of 
a subspace of RL. 

Example. If Lis a Banach space (more precisely, Lis endowed with the merotopy 
induced by the topology of a Banach space), then 11 is the space of continuous linear 
forms endowed with the merotopy induced by the following convergence: <{fa | a e 
e A}, f> e ££ iff A is an arbitrary directed set and (i)fax -* fx for each x e L, (ii) there 
is an a0 e A such that {fa | a e A, a ^ a0} is bounded. 

Theorem 10. Let Lbe a filter-merotopic linear space. Then II is an L-complete 
convex merotopic linear space satisfying condition (SH). Let cp denote the natural 
mapping of L into L", i.e. the mapping which assigns to any x e L the form Fx e V! 
defined by Fxf = fx, f e L. Then <p\L\ is dense in 111 and cp is continuous. The 
mapping cp is (i) injective if and only if every one-point subset of Lis L-functionally 
closed, (ii) an embedding if and only if, in addition, L is convex and satisfies 
condition (SH), (iii) an isomorphism if and only if L is an L-complete semi-separated 
convex merotopic linear space satisfying condition (SH). 
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