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ON QUASI-COMPONENTS 

A. LELEK 

Wrociaw 

The quasi-component Q(X, x) of a space X at a point x e l i s the intersection of 
all closed-open subsets of X that contain x. Let us write Q°(X, x) = X and use 
a transfinite induction to define Qa(X, x) for each ordinal a, namely 

Q*+1(X,x)= Q(Q\X,x),x) 

and 

Q\X, x) = f| Q\X, x) 
a<k 

for limit X. We call Qa(X, x) the quasi-component of order a of the space X at the 
point x. Thus quasi-components are quasi-components of order 1. 

Let Q denote the least uncountable ordinal, and consider a space X which has 
a countable open basis. Since the decreasing sequence 

Q°(X, x) =0 Q\X, x) 3 .. . 3 Qa(X, x) => ... 

consists of closed subsets of X, there is an ordinal /? < Q such that Q^(X, x) = 
= Q^ + 1(X ,x). The ordinal 

nc(X, x) = min {£ : QP(X, x) = Q^ + 1(X, x)} 

is called the non-connectivity index of the space X at the point x. 

Let .ff*(X) denote the j-th Borel class (j = 0, 1,...), additive when k = 0, and 
multiplicative when k = 1, of subsets of X. Thus, for instance, the elements of B°(X) 
are all F^-sets in X and the elements of B\(X) are all G^-sets in X. 

Theorem 1. / / P is the pseudo-arc and p e P, then for every ordinal a < Q 
there exists a set Pa cz P such that 

pePae B^P) n B{(P) and nc(Pa, p) = a . 

Given any collection C of subsets of a space X, we say a set U is componentwise 
universal in Cprovided U e C and there exists a closed subset Yof X such that each 
set C e Cis homeomorphic to a set U n V, where Vis a component of Y. 
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Theorem 2. IfP is the pseudo-arc, then there exists a componentwise universal 
set in each Borel class B^(P). 

The following result is a consequence of Theorem 1. 

Theorem 3. If a compact metric space X contains the pseudo-arc and a set U is 
componentwise universal in a Borel class Bj(X), where j > 0, then the non-con­
nectivity index of U is unbounded, i.e., 

Q = sup {nc(U, u) : u e U) . 

The first example of a space with unbounded non-connectivity index was con­
structed by Taimanov [2]. His example was a G^-set in the Euclidean 3-space, and he 
attributed to P. S. Novikov the problem whether or not there exists such a set on the 
plane. It follows from Theorems 2 and 3 that the pseudo-arc contains a G^-set, as 
well as an F^-set, with unbounded non-connectivity index. 

However, in all those examples one has already uncountably many quasi-
components of order 1. This suggests the following question. Does there exist 
a separable metric space with unbounded non-connectivity index and such that for 
each a < Q the collection of all quasi-components of orders less than a is countable? 
In other words, can a separable metric space have uncountably many quasi-
components of higher orders but only countably many quasi-components of orders 
bounded by any countable ordinal? The question seems to be related to an example 
of partially ordered set, given by Specker [1]. 

The proofs of Theorems 1 — 3 will be published in a paper on the topology of 
curves, to appear in Fundamenta Mathematicae. 
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