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ON SOME RESULTS CONCERNING A>SPACES 

A. ARHANGEL'SKIJ 

Moskva 

We consider two classes of spaces. Members of the first class are those topological 
spaces in which the sequential closure of arbitrary set coincides with the closure of 
the set. These spaces are called FU-spaces (Frechet-Urysohn spaces). The second 
class contains all those spaces, all subspaces of which are k-spaces. We call these 
spaces very k-spaces. The main theorem says that these two classes of spaces coincide 
(we consider only Hausdorff spaces). In interplay with some other results of the author 
this theorem leads us to the following assertions: 

A. Very k-spaces are precisely those spaces which are pseudoopen continuous 

images of metric spaces. 

Recall that a map / : X -• Y is called pseudoopen (see [1]) iff for each point 
y e Y and for each open set U, containing the s e t / _ 1 [ y ] , the interior of the set/[7 
contains y. 

B. Let X be a topological group, the space of which is a p-spa^e (see [2]). 

Then either of the two following conditions is fulfilled: 

1) X is metrizable; 

2) X contains a subspace which is not a k-space. 

C. We say that a point x of a space X is A-achievable, where A is a cardinal 
number, if there exists a subset M c X — {x} of the cardinality X such that x e [M]. 

Using the technic, developed for the proof of A, we show that ifX is an extremal-

ly disconnected bicompact Hausdorff space and if the character of a point xeX 

in X is equal to t, then x is X-achievable for some X < t . 
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