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THE SIMPLE DIMENSION 
OF A TOPOLOGICAL SPACE 

A. SOBCZYK 

CIcmson 

1. Introduction. Given a set S and any topology 2T for S, such that the space 
C(Sy ST) of all real-valued continuous functions on (S, £T) separates the points of S, 
there is a Tikhonov (completely regular and Tx-) topology £f for S, with 2T ZD £f, 
such that C(S, ST) = C(S, £f). For any set D(S) of functions which separates the 
points of S, there is a unique smallest Tikhonov topology £f for S such that D(S) a 
C(S, £f\ (See Chapter 3 of [4], and [12].) 

The evaluation map which is defined by f(s) = {x(s)}, over x e C(S, £f), is 
a homeomorphism of (S, £f) into a Cartesian product of real lines with C(S, £f) as 
index. In case £f is a proper subtopology of Sf', the same evaluation map is a con­
tinuous, but non-homeomorphic, injection of (S, £T) into the Cartesian product. 

The linear embedding characteristic of a Tikhonov space S is the cardinal of the 
smallest index J, such that the corresponding evaluation map into a product of lines, 
with J as index, is injective. The simple dimension at s e S similarly is the cardinal of 
the smallest index such that there is an open neighborhood Os of 5 such that the 
evaluation map is an injection of Os. The simple dimension of S is the supremum of the 
simple dimensions over s e S. 

In this work we propose to investigate relationships between the linear embedding 
characteristic, simple dimension, and the covering and inductive topological dimen­
sions. It is shown in [7] that for separable metric spaces S of finite dimension, 
m ^ 2n + 1, where m is the homeomorphic linear embedding characteristic, and n 
is the topological dimension. The question is raised whether a similar inequality 
holds for more general spaces S. 

In section 2 we discuss the linear embedding characteristic, and give simple 
examples of continuous, non-homeomorphic injections. In section 3 the embedding 
by bounded functions is examined, and in section 4 it is proved that if a compact 
space S has finite simple dimension at each of its points, then it has finite linear 
embedding characteristic. Section 5 is devoted to observations about spaces S which 
are subsets of a Euclidean space. 

A projected study by the writer, comparing and contrasting the Katetov dimen­
sion (which is defined in terms of the number of generators of the ring of bounded 
continuous functions on S — see [4], [10]) with the simple dimension, is unfinished 
at the time of this writing, and will be the subject of a later paper. 
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2. The linear embedding characteristic. For a Tikhonov space S, let us denote 
by C(S) the ring of all real-valued continuous functions on S, and by B(S) the subring 
of the bounded real continuous functions. Call an indexed subset {uf\ of C(S), where 
the functions in {uj} are assumed to be linearly independent on S, a separating set 
for S, in case the subset separates the points of S, i.e. in case for each pair s, s' of 
different points of S, there exists Uj in the subset such that Uj(s) =j= Uj(sf). We say that S 
has finite linear embedding characteristic ^ m , if there is a separating set for S which 
has the finite set J = {1, ..., m} as index, i.e. if a finite collection of functions 
uu ...,um separates the points of S. For any {uj} c C(S) and index J, {uj(s)} defines 
a continuous evaluation map cp = cp({uj}) of S into the Cartesian product of real 
lines with index J. Evidently <p({uj}) is injective if and only if {u^ is a separating set 
forS. 

Theorem 1. If {uj}, {Vj}, both with J = {1, ..., m}, are two separating sets 
for S, and if U, V are the respective images of S in Euclidean space Em under the 
corresponding evaluation maps, then V is a non-singular linear transform of U 
whenever {uj}, {vj} span the same m-dimensional subspace of C(S). 

Proof. If <{w/}> = ({vj}y, then the v/s must be linearly expressible in terms of 
the ufs, with a non-singular matrix. Therefore V is a non-singular linear transform 
of U. 

Example 1. In case S is the closed unit interval /, or the closed rc-dimensional 
hypercube In, n _- m, then since S is compact, the injective evaluation map cp is 
a homeomorphism of S with its image U in Em. But if S is the open unit interval or 
hypercube, the evaluation map may have no continuous extension, or no continuous 
injective extension, on the closed hypercube. In case of a continuous non-injective 
extension, the image U under the extended map of course is a Peano space. 

Theorem 2. If vt, ..., vn, not assumed linearly independent, separate the points 
of S, and if {uL, ..., um}, n < m, is a separating set for S, then image V is the 
linear transform of image U by a linear transformation of rank n, whenever 
<v1? ..., vny c= (uu ..., umy and (vu ..., v„> is n-dimensional. 

The proof is similar to the proof of Theorem 1, and therefore is omitted. 
It is easy to see that the converses of Theorems 1 and 2 are not true. 

Definition. For a space S which has finite linear embedding characteristic, the 
embedding characteristic of S is m, if it is not ^ (m — 1), but is :_ m. 

In terms of rectangular coordinates vi9 ...9vn in Euclidean space En, and uL, ...,um 

in Euclidean space Em, an injective continuous mapping g of a subset V <= En onto 
a subset U a Em is given by m real functions ux = gt(vi9 ..., vn), ..., um = gm(vx,..., 
vn). Through g, a continuous injection \j/ of S onto V, corresponding to a separating 
set of n functions vt(s), ..., vn(s) for S, determines a continuous injection cp = go\J/ 
of S onto U in Em, for which ut(s) = gt(vL(s)9..., vn(s)),..., um(s) = gm(vL(s),..., 
vn(s)) form the corresponding separating set of m functions. 
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If the linear embedding characteristic of a space S is w, then not only is Em the 
smallest flat containing the injective continuous image U, but also there does not 
exist a continuous injection of U into a lower-dimensional Euclidean space. For if 
there were such an injection, then there would be a separating set of continuous func­
tions for S containing fewer than m functions. 

Examples 2, 3, 4, 5. The half-open interval 0 ^ vL < 1 in El has the circle in E2 

as an injective continuous, but non-homeomorphic, image. In E2, consider the square 
0 ^ vt < \, 0 -^ v2 < \. A torus embedded in £ 3 is the injective continuous, but 
non-homeomorphic, image of the square. In £3 , consider V consisting of the cylinder 
v\ + v\ = \, v3 = 0, and the origin (0, 0, 0). The non-compact space Vhas as a con­
tinuous injective image in £2 , the compact space U which consists of a closed unit 
disc. In £2 , let V consist of the open disc v\ + v\ < \ and the point (0, — l). The 
open disc, plus identified points (0, — 1) and (0, 1), is a non-homeomorphic injective 
continuous image of V The disc with identified points may be embedded homeo-
morphically as a subspace U of £2 . 

Problem 1. Any Peano space is an injective continuous image of a subset of 
the closed unit interval. If V contains any rc-ball, then by the Brouwer invariance of 
domain, a continuous injective g cannot lower the dimension of V. Does there exist 
a Vnot containing an n-ball, such that En is required for a homeomorphic embedding* 
but only £m with m < n in order to have an injective continuous image U of V? 

For the homeomorphism g of the open disc in £ 2 onto the open strip — oo < 
< vx < oo, 0 < v2 < 1 in £2 , there is no continuous extension of g on the closed 
disc with range in £2 . For the square and injective mapping g to £ 3 as in Example 3, 
g restricted to the open square is a homeomorphism, and has a continuous extension 
on the closed square, but no such extension which is injective on the closed square. 

Problem 2. For an injective mapping g of Vc En onto U c Em, does there 
always exist a dense subset Vi of V, having the same topological dimension as V, 
such that g restricted to VL is a homeomorphism? 

Theorem 4 below points out that an injective evaluation map cp of S is a homeo­
morphism iff, when cp(S) is replaced by a homeomorph in the product of closed 
intervals with index J, there exists a compactification yS which is such that there 
exists a continuous and injective extension of (p on yS. 

3. Linear embedding by bounded functions. Given any finite collection {ut, ..., 
um} of functions on S and the corresponding evaluation map cp, then the image 
U = cp(S) in Euclidean space £m is bounded iff the functions ui9 ...,um are all bounded, 
i.e. iff <u l 9 . . . , um} is a subspace of B(S). 

Theorem 3. For each finite collection {uj} of real continuous functions on S, 
and the corresponding evaluation map cp of S onto U in Euclidean space, there is 
a collection of bounded real continuous functions {vj} on S, and a corresponding 
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evaluation map of S, onto a bounded subset V of Euclidean space which is homeo-
morphic with U .If'<{"/}> **8 of dimension m, then also ({vj}y maybe of dimension m. 

Proof. The proof is obtained by constructing a radial homeomorphism, using 
the function r = (2/7c) arc tan r. Details are left to the reader. 

By Theorem 3, if S has finite linear embedding characteristic, then given a separat­
ing set {uj} for S, J = {1 , . . . , m}, we may assume that the functions Uj(s) and the 
injective image U of S in Em are bounded. 

Theorem 4, If {uj} with index J is a separating set for S, and if <{uj}> <= B(S), 
then the injective mapping cp of S onto U is a homeomorphism iff there exists 
a compactification yS of S, and an injective continuous extension of (p on yS, with 
range in the product with index J of real lines. 

Proof. Since the coordinate functions Uj are bounded, the image 17 = cp(S) is 
included in the compact product of closed finite real intervals. Therefore the closure U 
of U is a compact Hausdorff space, and in case cp is a homeomorphism, we may take 
for yS a copy of U containing S as dense subspace; cp then may be extended to be 
a homeomorphism of yS onto U. 

In case there is a compactification yS and an injective continuous extension cp~ 
on yS of q>, then by Theorem 8 on p. 141 of [9], the mapping cp~ is a homeomorphism 
on yS, and in particular its restriction cp on S is a homeomorphism. 

4. Simple dimension. We say that the simple dimension of S at a point seS 
is =n, in case there exists a set {uj} cz C(S), J = {1, , n}, and an open neighbour­
hood Os of s, such that {uj(s)} is a separating set for the points of Os. The simple 
dimension at s is equal to n if it is —-n, but not ^(n — l); and the simple dimension 
of S is n in case the simple dimension is equal to n for at least one point s e S, and = n 
at all other points of S. 

If a space S has finite linear embedding characteristic m, then of course it has 
simple dimension ^ m . The next theorem shows conversely, at least in case S is 
compact, that a space S which has finite simple dimension must also have finite linear 
embedding characteristic. Any separable metric space S of topological dimension n 
has linear embedding characteristic m = In + 1. (See page 60 of [7].) 

Theorem 5. If a space S is compact and has finite simple dimension at each of 
its points, then it has finite simple dimension, and finite linear embedding charac­
teristic. 

Proof. Since a compact Hausdorff space is normal, we have that for each pair 
of points s, s' of S, s 4= s', there are disjoint open neighborhoods Os, Os, of respec­
tively s, s', and a function from C(S) or B(S), which separates Os, Os>. For each point 
(s, s') of the Cartesian product S x S, with s #= s', choose such a pair of neighbor­
hoods; let U(s, s') be their Cartesian product. The Cartesian products Os x Os, 
where the neighborhoods Os are chosen possessing the property mentioned in the 
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definition of the simple dimension at 5, cover the diagonal of S x S. By compactness, 
a finite subset of the {Os x Os} and of the {U(s, s')} cover S x S. Thus only a finite 
number of subspaces from the collection of finite dimensional linear subspaces of C(S) 
and only a finite number of basic functions, are required to separate the points of S. 

5. Remarks on subsets of Euclidean space. Since Euclidean space has c points, any 
space S having more than c points, such as for example the Stone-Cech compactifica-
tion fiN of the discrete set of integers IV, cannot be in one-to-one correspondence with 
any subset of Euclidean space, and in particular it cannot have finite linear embedding 
characteristic. Thus of course such a space S cannot be separable and metrizable. 

Problem 3. Describe the spaces S having more than c points, which have finite 
simple dimension, or finite topological dimension, with respect to properties including 
generalized separability, connectivity, metrizability. 

Any subset S of Euclidean space En either is of topological dimension ^ n , 
or is of infinite topological dimension. For as a subset of E\ S is a separable 
metrizable space; if S c En were of finite dimension m > n, since En o En\ we 
may consider that S cz £m. Then by Theorem IV 3 on page 44 of [7], S must contain 
an open set of dimension m, but since S a E\ this is impossible by the Brouwer 
invariance of domain. Compare this observation with Theorem 16.22 on page 251 
of [4]: Any compact subset of En is of dimension :gn. Compare it also with the 
following well-known theorem (see [10]): A metrizable space S is of dimension ^ n 
iff for each £ > 0 there exists an s-mapping of S onto a polyhedron of dimension ^ n. 
The definition of topological dimension in [4] is slightly different than those of the 
covering and inductive dimensions, which coincide for separable metric spaces [10]. 

A space is realcompact or Hewitt-compact iff it is homeomorphic with a closed 
subset of a Cartesian product of real lines. Any subset of Euclidean space is real-
compact [4]. Call a space finite-realcompact if the number of lines in the product may 
be finite. Euclidean space of dimension n is the Cartesian product of n lines, so closed 
subsets of En are finite-realcompact. Also many non-closed subsets of £n, for example 
the hypercube 0 ^ vt < 1, i = 1, ..., n, are homeomorphic with closed subspaces 
of Euclidean space. (The described hypercube is homeomorphic with the closed 
non-negative orthant of £n.) 

Problem 4. Characterize those subsets of Euclidean space which are not finite-
realcompact, i.e. not homeomorphic with any closed subset of Euclidean space. 

By Lemma 6.11 on page 92 of [4], the homeomorphism / of a non-finite-
realcompact subset S of Euclidean space £M, onto the closed subset of the infinite 
Cartesian product of lines, has no continuous extension on the closure S of S in £". 
(By the cited Lemma, if an extension £ were continuous, the inverse image under £ 
of the closed subset would be the non-closed subset S of En, contradicting continuity.) 
Each separable metric space of finite (or infinite) topological dimension has a separ­
able metric compactification of the same dimension. We regard the number of lines 
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required in the Cartesian product, for embedding S as a closed subset, as a sort of 
measure of the dimension of S; each non-finite-realcompact subset S of En has its 
closure S in En as a finite-realcompactification. (The finite-realcompactification 
reduces the measure of the dimension from infinite to finite.) 

For a set S with topology Sf9 let us denote the embedding characteristic by 
emb (S, Sf). Call a topology % ultimate in case for any larger topology ST, we have 
emb (S, ST) < emb (S, %). For a set S with at least two and not more than c elements, 
the discrete topology is ultimate for the case emb (S, Sf) = 1. (There exists a single 
real function which separates the points of S.) Similarly to Example 3, by cutting 
holes in a torus and retaining half of the boundaries, an injective pre-image of the 
torus is obtained. But the non-compact pre-image is homeomorphically embeddable 
in the plane, and thus has embedding characteristic 2. 

Problem 5. For the case emb (S, Sf) = n > 1, does there exist a topology Sf 
for which there is no ultimate topology Wl That is, is it possible to have Sf such that 
there exist an infinite chain of successively larger topologies, all with embedding 
characteristic n, which has no upper bound f with emb (S, "T) = emb (S, Sf) = n? 
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